Automating the act of grasping is one of the most compelling challenges in robotics. In recent times, a major trend has gained the attention of the robotic grasping community: soft manipulation. Along with the design of intrinsically soft robotic hands, it is important to devise grasp planning strategies that can take into account the hand characteristics, but are general enough to be applied to different robotic systems. In this article, we investigate how to perform top grasps with soft hands according to a model-based approach, using both power and precision grasps. The so-called closure signature (CS) is used to model closure motions of soft hands by associating to them a preferred grasping direction. This direction can be aligned to a suitable direction over the object to achieve successful top grasps. The CS-alignment is here combined with a recently developed AI-driven grasp planner for rigid grippers that is adjusted and used to retrieve an estimate of the optimal grasp to be performed on the object. The resulting grasp planner is tested with multiple experimental trials with two different robotic hands. A wide set of objects with different shapes was grasped successfully.
In this work we briefly present Mag-Gripper, a novel robotic gripper specifically designed for autonomous clothing manipulation. It is capable of improving the grasp repeatability and precision, compensating uncertainties in the desired grasping locations by exploiting a proper magnetic force. It is an augmented jaw gripper, equipped with an electromagnet capable of attracting small metal parts suitably placed on the garment to be grasped. Mag-Gripper can find applications either in Research labs investigating Machine Learning-based clothing manipulation, either in companies having to manage a large amount of returns, either in home setting scenarios.
In this letter, we propose a physics-based framework to exploit magnets in robotic manipulation. More specifically, we suggest equipping soft and underactuated hands with magnetic elements, which can generate a magnetic actuation able to synergistically interact with tendon-driven and pneumatic actuations, engendering a complementarity that enriches the capabilities of the actuation system. Magnetic elements can act as additional Degrees of Actuation (DoAs), robustifying the motion control of the device and augmenting the hand manipulation capabilities. We investigate the interaction of a soft hand with itself for enriching possible hand shaping, and the interaction of the hand with the environment for enriching possible grasping capabilities. Physics laws and notions reported in the manuscript can be used as a guidance for DoAs augmentation and can provide tools for the design of novel soft hands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.