The Wind Energy Conversion System (WECS) based Doubly Fed Induction Generator (DFIG) has experienced a rapid development in the world, which leads to an increasing insertion of this source of energy in the electrical grids. The sudden and temporary drop of voltage at the network can affect the operation of the DFIG; the voltage dips produce high peak currents on the stator and rotor circuits, without protection, the rotor side converter (RSC) will suffer also from over-current limit, consequently, the RSC may even be destroyed and the generator be damaged. In this paper a new Direct Power Control (DPC) method was developed, in order to control the stator powers and help the operation of the aero-generator during the faults grid; by injecting the reactive power into the network to contribute to the return of voltage, and set the active power to the optimum value to suppress the high peak currents. The DPC method was designed using the nonlinear Backstepping (BS) controller associated with the Lyapunov function to ensure the stability and robustness of the system. A comparison study was undertaken to verify the robustness and effectiveness of the DPC-BS to that of the classical vector control (VC) using Proportional-Integral (PI) correctors. All were simulated under the Simulink® software.
<p>This article, present a new contribution to the control of wind energy systems, a robust nonlinear control of active and reactive power with the use of the Backstepping and Sliding Mode Control approach based on a doubly fed Induction Generator power (DFIG-Generator) in order to reduce the response time of the wind system. In the first step, a control strategy of the MPPT for the extraction of the maximum power of the turbine generator is presented. Subsequently, the Backstepping control technique followed by the sliding mode applied to the wind systems will be presented. These two types of control system rely on the stability of the system using the LYAPUNOV technique. Simulation results show performance in terms of set point tracking, stability and robustness versus wind speed variation. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.