Knowledge on Staphylococcus aureus colonization rates and epidemiology in hand eczema is limited. The aim of this study was to clarify some of these issues. Samples were collected by the "glove juice" method from the hands of 59 patients with chronic hand eczema and 24 healthy individuals. Swab samples were taken from anterior nares and throat from 43 of the 59 patients and all healthy individuals. S. aureus were spa typed and analysed by DNA-microarray-based genotyping. The extent of the eczema was evaluated by the hand eczema extent score (HEES). The colonization rate was higher on the hands of hand eczema patients (69 %) compared to healthy individuals (21 %, p < 0.001). This was also seen for bacterial density (p = 0.002). Patients with severe hand eczema (HEES ≥ 13) had a significantly higher S. aureus density on their hands compared to those with milder eczema (HEES = 1 to 12, p = 0.004). There was no difference between patients and healthy individuals regarding colonization rates in anterior nares or throat. spa typing and DNA-microarray-based genotyping indicated certain types more prone to colonize eczematous skin. Simultaneous colonization, in one individual, with S. aureus of different types, was identified in 60-85 % of the study subjects. The colonization rate and density indicate a need for effective treatment of eczema and may have an impact on infection control in healthcare.
Since the late 1990s, changes in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) were recognized with the emergence of community-associated MRSA (CA-MRSA). CA-MRSA belonging to clonal complex 152 (CC152), carrying the small staphylococcal cassette chromosome mec (SCCmec) type V and encoding the Panton-Valentine leukocidin (PVL), has been observed in Europe. The aim of this study was to investigate its origin, evolution, and dissemination. Whole-genome sequencing was performed on a global collection of 149 CC152 isolates spanning 20 years (93 methicillin-susceptible S. aureus [MSSA] and 56 MRSA isolates). Core genome phylogeny, Bayesian inference, in silico resistance analyses, and genomic characterization were applied. Phylogenetic analysis revealed two major distinct clades, one dominated by MSSA and the other populated only by MRSA. The MSSA isolates were predominately from sub-Saharan Africa, whereas MRSA was almost exclusively from Europe. The European MRSA isolates all harbored an SCCmec type V (5C2&5) element, whereas other SCCmec elements were sporadically detected in MRSA from the otherwise MSSA-dominated clade, including SCCmec types IV (2B), V (5C2), and XIII (9A). In total, 93% of the studied CC152 isolates were PVL positive. Bayesian coalescent inference suggests an emergence of the European CC152-MRSA in the 1990s, while the CC152 lineage dates back to the 1970s. The CA-MRSA CC152 clone mimics the European CC80 CA-MRSA lineage by its emergence from a PVL-positive MSSA ancestor from North Africa or Europe. The CC152 lineage has acquired SCCmec several times, but acquisition of SCCmec type V (5C2&5) seems associated with expansion of MRSA CC152 in Europe. IMPORTANCE Understanding the evolution of CA-MRSA is important in light of the increasing importance of this reservoir in the dissemination of MRSA. Here, we highlight the story of the CA-MRSA CC152 lineage using whole-genome sequencing on an international collection of CC152. We show that the evolution of this lineage is novel and that antibiotic usage may have the potential to select for the phage-encoded Panton-Valentine leukocidin. The diversity of the strains correlated highly to geography, with higher level of resistance observed among the European MRSA isolates. The mobility of the SCCmec element is mandatory for the emergence of novel MRSA lineages, and we show here distinct acquisitions, one of which is linked to the successful clone found throughout Europe today.
Shiga toxin–producing Escherichia coli (STEC) cause bloody diarrhea (BD), hemorrhagic colitis (HC), and even hemolytic uremic syndrome (HUS). In Nordic countries, STEC are widely spread and usually associated with gastrointestinal symptoms and HUS. The objective of this study was to investigate the occurrence of STEC in Swedish patients over 10 years of age from 2003 through 2015, and to analyze the correlation of critical STEC virulence factors with clinical symptoms and duration of stx shedding. Diarrheal stool samples were screened for presence of stx by real-time PCR. All STEC isolates were characterized by DNA microarray assay and PCR to determine serogenotypes, stx subtypes, and presence of intimin gene eae and enterohaemolysin gene ehxA. Multilocus sequencing typing (MLST) was used to assess phylogenetic relationships. Clinical features were collected and analyzed using data from the routine infection control measures in the county. A total of 14,550 samples were enrolled in this 12-years period study, and 175 (1.2%) stools were stx positive by real-time PCR. The overall incidence of STEC infection was 4.9 cases per 100,000 person-years during the project period. Seventy-five isolates, with one isolate per sample were recovered, among which 43 were from non-bloody stools, 32 from BD, and 3 out of the 75 STEC positive patients developed HUS. The presence of stx2 in both stools and isolates were associated with BD (p = 0.008, p = 0.05), and the presence of eae in isolates was related to BD (p = 0.008). The predominant serogenotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Isolates from HUS were O104:H4 and O98: H21 serotypes. Phylogenetic analysis revealed our strains were highly diverse, and showed close relatedness to HUS-associated STEC collection strains. In conclusion, the presence of stx2 in stool was related to BD already at the initial diagnostic procedure, thus could be used as risk predictor at an early stage. STEC isolates with stx2 and eae were significantly associated with BD. The predominant serotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Nevertheless, the pathogenic potential of other serotypes and genotypes should not be neglected.
Shiga toxin (Stx)-producing Escherichia coli (STECs) cause non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome, and are the primary cause of acute renal failure in children worldwide. This study investigated the correlation of genetic makeup of STEC strains as revealed by DNA microarray to clinical symptoms and the duration of STEC shedding. All STEC isolated (n = 96) from patients <10 years of age in Jönköping County, Sweden from 2003 to 2015 were included. Isolates were characterized by DNA microarray, including almost 280 genes. Clinical data were collected through a questionnaire and by reviewing medical records. Of the 96 virulence genes (including stx) in the microarray, 62 genes were present in at least one isolate. Statistically significant differences in prevalence were observed for 21 genes when comparing patients with bloody diarrhea (BD) and with non-bloody stool (18 of 21 associated with BD). Most genes encode toxins (e.g., stx2 alleles, astA, toxB), adhesion factors (i.e. espB_O157, tir, eae), or secretion factors (e.g., espA, espF, espJ, etpD, nleA, nleB, nleC, tccP). Seven genes were associated with prolonged stx shedding; the presence of three genes (lpfA, senB, and stx1) and the absence of four genes (espB_O157, espF, astA, and intI1). We found STEC genes that might predict severe disease outcome already at diagnosis. This can be used to develop diagnostic tools for risk assessment of disease outcome. Furthermore, genes associated with the duration of stx shedding were detected, enabling a possible better prediction of length of STEC carriage after infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.