Recent studies disagree on whether musicians have an advantage over non-musicians in understanding speech in noise. However, it has been suggested that musicians may be able to use differences in fundamental frequency (F0) to better understand target speech in the presence of interfering talkers. Here we studied a relatively large (N = 60) cohort of young adults, equally divided between non-musicians and highly trained musicians, to test whether the musicians were better able to understand speech either in noise or in a two-talker competing speech masker. The target speech and competing speech were presented with either their natural F0 contours or on a monotone F0, and the F0 difference between the target and masker was systematically varied. As expected, speech intelligibility improved with increasing F0 difference between the target and the two-talker masker for both natural and monotone speech. However, no significant intelligibility advantage was observed for musicians over non-musicians in any condition. Although F0 discrimination was significantly better for musicians than for non-musicians, it was not correlated with speech scores. Overall, the results do not support the hypothesis that musical training leads to improved speech intelligibility in complex speech or noise backgrounds.
The signal processing and fitting methods used for hearing aids have mainly been designed to optimize the intelligibility of speech. Little attention has been paid to the effectiveness of hearing aids for listening to music. Perhaps as a consequence, many hearing-aid users complain that they are not satisfied with their hearing aids when listening to music. This issue inspired the Internet-based survey presented here. The survey was designed to identify the nature and prevalence of problems associated with listening to live and reproduced music with hearing aids. Responses from 523 hearing-aid users to 21 multiple-choice questions are presented and analyzed, and the relationships between responses to questions regarding music and questions concerned with information about the respondents, their hearing aids, and their hearing loss are described. Large proportions of the respondents reported that they found their hearing aids to be helpful for listening to both live and reproduced music, although less so for the former. The survey also identified problems such as distortion, acoustic feedback, insufficient or excessive gain, unbalanced frequency response, and reduced tone quality. The results indicate that the enjoyment of listening to music with hearing aids could be improved by an increase of the input and output dynamic range, extension of the low-frequency response, and improvement of feedback cancellation and automatic gain control systems.
It remains unclear whether musical training is associated with improved speech understanding in a noisy environment, with different studies reaching differing conclusions. Even in those studies that have reported an advantage for highly trained musicians, it is not known whether the benefits measured in laboratory tests extend to more ecologically valid situations. This study aimed to establish whether musicians are better than non-musicians at understanding speech in a background of competing speakers or speech-shaped noise under more realistic conditions, involving sounds presented in space via a spherical array of 64 loudspeakers, rather than over headphones, with and without simulated room reverberation. The study also included experiments testing fundamental frequency discrimination limens (F0DLs), interaural time differences limens (ITDLs), and attentive tracking. Sixty-four participants (32 non-musicians and 32 musicians) were tested, with the two groups matched in age, sex, and IQ as assessed with Raven’s Advanced Progressive matrices. There was a significant benefit of musicianship for F0DLs, ITDLs, and attentive tracking. However, speech scores were not significantly different between the two groups. The results suggest no musician advantage for understanding speech in background noise or talkers under a variety of conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.