The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs—about 50 MDa—is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4–11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides—in the terminology of the Flory polymer theory12—a ‘good solvent’ environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder–function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.
The ~120 MDa nuclear pore complex (NPC) acts as a gatekeeper for the molecular traffic between the nucleus and the cytosol. Small cargo readily passes through the transport channel, yet large cargo requires specialized nuclear transport receptors. While the scaffold structure that anchors the NPC in the double-layered nuclear envelope has been resolved to remarkable details, the spatial organization of intrinsically disordered nucleoporins (NUPs) within the central channel remains enigmatic. These so-called FG-NUPs account for about one-third of the total mass of the NPC and form the actual transport barrier. Here we combined site-specific fluorescent labeling in non-fixed cells and fluorescent lifetime imaging microscopy (FLIM) to directly decipher the conformations of an essential constituent of the permeability barrier, NUP98, inside the functioning NPCs using Fluorescence resonance energy transfer (FRET). With detailed measurements of the distance distribution of eighteen NUP98 segments combined with coarse-grained modeling, we mapped the uncharted biochemical environment inside the nanosized transport channel. We found that "good-solvent" conditions for a polymer dominate the inside of the nanosized NPC, expand the FG-domain in situ and facilitate nuclear transport, in sharp contrast to the collapsed NUP98 FG-chain in aqueous solution. The combination of fluorescence microscopy, high-resolution electron tomography, and molecular simulation opens a window into the so-far unresolved organization of the FG-NUPs at the center of NPC function, allowing us to reconcile scientific models of nuclear transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.