Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a ‘natural’ unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, “R. indicum” and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Image-based phenotype data with high temporal resolution offers advantages over end-point measurements in plant quantitative genetics experiments, because growth dynamics can be assessed and analysed for genotype-phenotype association. Recently, network-based camera systems have been deployed as customizable, low-cost phenotyping solutions. Here, we implemented a large, automated image-capture system based on distributed computing using 180 networked Raspberry Pi units that could simultaneously monitor 1,800 white clover ( Trifolium repens ) plants. The camera system proved stable with an average uptime of 96% across all 180 cameras. For analysis of the captured images, we developed the Greenotyper image analysis pipeline. It detected the location of the plants with a bounding box accuracy of 97.98%, and the U-net-based plant segmentation had an intersection over union accuracy of 0.84 and a pixel accuracy of 0.95. We used Greenotyper to analyze a total of 355,027 images, which required 24–36 h. Automated phenotyping using a large number of static cameras and plants thus proved a cost-effective alternative to systems relying on conveyor belts or mobile cameras.
Sequencing and PCR errors are a major challenge when characterizing genetic diversity using high‐throughput amplicon sequencing (HTAS). We have developed a multiplexed HTAS method, MAUI‐seq, which uses unique molecular identifiers (UMIs) to improve error correction by exploiting variation among sequences associated with a single UMI. Erroneous sequences are recognized because, across the data set, they are over‐represented among the minor sequences associated with UMIs. We show that two main advantages of this approach are efficient elimination of chimeric and other erroneous reads, outperforming dada2 and unoise3, and the ability to confidently recognize genuine alleles that are present at low abundance or resemble chimeras. The method provides sensitive and flexible profiling of diversity and is readily adaptable to most HTAS applications, including microbial 16S rRNA profiling and metabarcoding of environmental DNA.
TitleMajor effect loci for plant size before onset of nitrogen fixation allow accurate prediction of yield in white clover Key messageAccurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.