In order to reduce the dimensionality of parameter space and enhance out-of-sample forecasting performance, this research compares regularization techniques with Autometrics in time-series modeling. We mainly focus on comparing weighted lag adaptive LASSO (WLAdaLASSO) with Autometrics, but as a benchmark, we estimate other popular regularization methods LASSO, AdaLASSO, SCAD, and MCP. For analytical comparison, we implement Monte Carlo simulation and assess the performance of these techniques in terms of out-of-sample Root Mean Square Error, Gauge, and Potency. The comparison is assessed with varying autocorrelation coefficients and sample sizes. The simulation experiment indicates that, compared to Autometrics and other regularization approaches, the WLAdaLASSO outperforms the others in covariate selection and forecasting, especially when there is a greater linear dependency between predictors. In contrast, the computational efficiency of Autometrics decreases with a strong linear dependency between predictors. However, under the large sample and weak linear dependency between predictors, the Autometrics potency ⟶ 1 and gauge ⟶ α. In contrast, LASSO, AdaLASSO, SCAD, and MCP select more covariates and possess higher RMSE than Autometrics and WLAdaLASSO. To compare the considered techniques, we made the Generalized Unidentified Model for covariate selection and out-of-sample forecasting for the trade balance of Pakistan. We train the model on 1985–2015 observations and 2016–2020 observations as test data for the out-of-sample forecast.
The coronavirus disease 2019 (COVID-19) pandemic continues to destroy human life around the world. Almost every country throughout the globe suffered from this pandemic, forcing various governments to apply different restrictions to reduce its impact. In this study, we compare different time-series models with the neural network autoregressive model (NNAR). The study used COVID-19 data in Pakistan from February 26, 2020, to February 18, 2022, as a training and testing data set for modeling. Different models were applied and estimated on the training data set, and these models were assessed on the testing data set. Based on the mean absolute scaled error (MAE) and root mean square error (RMSE) for the training and testing data sets, the NNAR model outperformed the autoregressive integrated moving average (ARIMA) model and other competing models indicating that the NNAR model is the most appropriate for forecasting. Forecasts from the NNAR model showed that the cumulative confirmed COVID-19 cases will be 1,597,180 and cumulative confirmed COVID-19 deaths will be 32,628 on April 18, 2022. We encourage the Pakistan Government to boost its immunization policy.
The study investigates the query of structural break or unit root considering four macroeconomic indicators; unemployment rate, interest rate, GDP growth, and inflation rate of Pakistan. The previous studies create ambiguity regarding the stationarity and non-stationarity of these variables. We employ Zivot & Andrews (1992) unit root test and Step Indicator Saturation (SIS) method for multiple break detection in mean. GDP growth and inflation rate are stationary at level whereas unit root tests fail to reject the null hypothesis of the unemployment rate and interest rate at level. However, Zivot and Andrew unit root test with a single endogenous break indicates that the unemployment rate and interest rate are stationary at level with a single endogenous break. On the other hand, the SIS method reveals that the series are stationary with multiple structural breaks. It is inferred that it is inappropriate to take the first difference of the unemployment rate and interest rate to attain stationarity. The results of this study confirmed that there exist multiple breaks in the macroeconomic variables considered in the context of Pakistan.
This research compares factor models based on principal component analysis (PCA) and partial least squares (PLS) with Autometrics, elastic smoothly clipped absolute deviation (E-SCAD), and minimax concave penalty (MCP) under different simulated schemes like multicollinearity, heteroscedasticity, and autocorrelation. The comparison is made with varying sample size and covariates. We found that in the presence of low and moderate multicollinearity, MCP often produces superior forecasts in contrast to small sample case, whereas E-SCAD remains better. In the case of high multicollinearity, the PLS-based factor model remained dominant, but asymptotically the prediction accuracy of E-SCAD significantly enhances compared to other methods. Under heteroscedasticity, MCP performs very well and most of the time beats the rival methods. In some circumstances under large samples, Autometrics provides a similar forecast as MCP. In the presence of low and moderate autocorrelation, MCP shows outstanding forecasting performance except for the small sample case, whereas E-SCAD produces a remarkable forecast. In the case of extreme autocorrelation, E-SCAD outperforms the rival techniques under both the small and medium samples, but further augmentation in sample size enables MCP forecast more accurate comparatively. To compare the predictive ability of all methods, we split the data into two halves (i.e., data over 1973–2007 as training data and data over 2008–2020 as testing data). Based on the root mean square error and mean absolute error, the PLS-based factor model outperforms the competitor models in terms of forecasting performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.