The exploration/exploitation tradeoff-pursuing a known reward vs. sampling from lesser known options in the hope of finding a better payoff-is a fundamental aspect of learning and decision making. In humans, this has been studied using multi-armed bandit tasks. The same processes have also been studied using simplified probabilistic reversal learning (PRL) tasks with binary choices. Our investigations suggest that protocols previously used to explore PRL in mice may prove beyond their cognitive capacities, with animals performing at a no-better-than-chance level. We sought a novel probabilistic learning task to improve behavioral responding in mice, whilst allowing the investigation of the exploration/exploitation tradeoff in decision making. To achieve this, we developed a two-lever operant chamber task with levers corresponding to different probabilities (high/low) of receiving a saccharin reward, reversing the reward contingencies associated with levers once animals reached a threshold of 80% responding at the high rewarding lever. We found that, unlike in existing PRL tasks, mice are able to learn and behave near optimally with 80% high/20% low reward probabilities. Altering the reward contingencies towards equality showed that some mice displayed preference for the high rewarding lever with probabilities as close as 60% high/40% low. Additionally, we show that animal choice behavior can be effectively modelled using reinforcement learning (RL) models incorporating learning rates for positive and negative prediction error, a perseveration parameter, and a noise parameter. This new decision task, coupled with RL analyses, advances access to investigate the neuroscience of the exploration/exploitation tradeoff in decision making.
RATIONALE In conflict-based anxiety tests, rodents decide between actions with simultaneous rewarding and aversive outcomes. In humans, computerised operant conflict tests have identified response choice, latency, and vigour as distinct behavioural components. Animal operant conflict tests for measurement of these components would facilitate translational study. OBJECTIVES In C57BL/6 mice, two operant conflict tests for measurement of response choice, latency, and vigour were established, and effects of chlordiazepoxide (CDZ) thereon investigated. METHODS Mice were moderately diet-restricted to increase sucrose reward salience. A 1-lever test required responding under medium-effort reward/threat conditions of variable ratio 2-10 resulting in sucrose at p = 0.7 and footshock at p = 0.3. A 2-lever test mandated a choice between low-effort reward/threat with a fixed-ratio (FR) 2 lever yielding sucrose at p = 0.7 and footshock at p = 0.3 versus high-effort reward/no threat with a FR 20 lever yielding sucrose at p = 1. RESULTS In the 1-lever test, CDZ (7.5 or 15 mg/kg i.p.) reduced post-trial pause (response latency) following either sucrose or footshock and reduced inter-response interval (increased response vigour) after footshock. In the 2-lever test, mice favoured the FR2 lever and particularly at post-reward trials. CDZ increased choice of FR2 and FR20 responding after footshock, reduced response latency overall, and increased response vigour at the FR2 lever and after footshock specifically. CONCLUSIONS Mouse operant conflict tests, especially 2-lever choice, allow for the translational study of distinct anxiety components. CDZ influences each component by ameliorating the impact of both previous punishment and potential future punishment.
Background: Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. Methods: Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. Results: Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86 + and CD45 + CD11b + CD11c +) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.