The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
BackgroundThe microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables.MethodsMiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR.ResultsWe identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs).ConclusionsTaken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.
Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.
The miR-145-5p, which induces TP53-dependent apoptosis, is down-regulated in several tumors, including hepatocellular carcinomas (HCCs), but some HCCs show physiological expression of this miR. Here we demonstrate that in HCC cells carrying wild-type TP53 the steady activation of the miR-145 signaling selects clones resistant to apoptosis via up-regulation of the oncogenic miR-483-3p. Expression of the miR-145-5p and of the miR-483-3p correlated negatively in non-neoplastic liver (n=41; ρ=−0.342, P=0.028), but positively in HCCs (n=21; ρ=0.791, P<0.0001), which we hypothesized to be due to impaired glucose metabolism in HCCs versus normal liver. In fact, when liver cancer cells were grown in low glucose, miR-145-5p lowered miR-483-3p expression, allowing apoptosis, whereas when cells were grown in high glucose the levels of miR-483-3p increased, reducing the apoptotic rate. This indicates that depending on glucose availability the miR-145-5p has double effects on the miR-483-3p, either inhibitory or stimulatory. Moreover, resistance to apoptosis in clones overexpressing both miR-145-5p and miR-483-3p was abrogated by silencing the miR-483-3p. Our data highlight a novel mechanism of resistance to apoptosis in liver cancer cells harbouring wild type TP53 and suggest a potential role of miR-145-5p and miR-483-3p as druggable targets in a subset of HCCs.
The miR-483-3p is upregulated in several tumors, including liver tumors, where it inhibits TP53-dependent apoptosis by targeting the pro-apoptotic gene BBC3/PUMA. The transcriptional regulation of the miR-483-3p could be driven by the β-catenin/USF1 complex, independently from its host gene IGF2, and we previously demonstrated that in HepG2 hepatoblastoma cells carrying wild-type TP53 the upregulation of the miR-483-3p overcomes the antitumoral effects of the tumor-suppressor miR-145-5p by a mechanism involving cellular glucose availability. Here we demonstrate that in HepG2 cells, the molecular link between glucose concentration and miR-483-3p expression entails the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which stabilizes the transcriptional complex at the miR-483 promoter. HepG2 cells showed reduced miR-483-3p expression and increased susceptibility to 5-fluorouracil (5-FU)-induced apoptosis in presence of the inhibitor of glycolysis 2-deoxy-d-glucose (2-DG). However, in vivo experiments showed that HepG2 cells with higher miR-483-3p expression were selected during tumor progression regardless of 5-FU treatment. Furthermore, treatment with 2-DG alone did not significantly reduce HepG2 xenograft load in immunodeficient mice. In conclusion, we show that in HepG2 cells glucose uptake increases the expression of the oncogenic miR-483-3p through the OGT pathway. This suggests that depletion of the miR-483-3p may be a valuable therapeutic approach in liver cancer patients, but the use of inhibitors of glycolysis to achieve this purpose could accelerate the selection of resistant neoplastic cell clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.