Performing highly accurate simulations of droplet systems is a challenging problem. This is primarily due to the interface dynamics which is complicated further by the addition of surfactants. This paper presents a boundary integral method for computing the evolution of surfactant-covered droplets in 2D Stokes flow. The method has spectral accuracy in space and the adaptive time-stepping scheme allows for control of the temporal errors. Previously available semi-analytical solutions (based on conformalmapping techniques) are extended to include surfactants, and a set of algorithms is introduced to detail their evaluation. These semi-analytical solutions are used to validate and assess the accuracy of the boundary integral method, and it is demonstrated that the presented method maintains its high accuracy even when droplets are in close proximity.
Summary
A highly accurate method for simulating surfactant‐covered droplets in two‐dimensional Stokes flow with solid boundaries is presented. The method handles both periodic channel flows of arbitrary shape and stationary solid constrictions. A boundary integral method together with a special quadrature scheme is applied to solve the Stokes equations to high accuracy, also for closely interacting droplets. The problem is considered in a periodic setting and Ewald decompositions for the Stokeslet and stresslet are derived. Computations are accelerated using the spectral Ewald method. The time evolution is handled with a fourth‐order, adaptive, implicit‐explicit time‐stepping scheme. The numerical method is tested through several convergence studies and other challenging examples and is shown to handle drops in close proximity both to other drops and solid objects to high accuracy.
Two-dimensional Stokes flow through a periodic channel is considered. The channel walls need only be Lipschitz continuous, in other words they are allowed to have corners. Boundary integral methods are an attractive tool for numerically solving the Stokes equations, as the partial differential equation can be reformulated into an integral equation that must be solved only over the boundary of the domain. When the boundary is at least C 1 smooth, the boundary integral kernel is a compact operator, and traditional Nyström methods can be used to obtain highly accurate solutions. In the case of Lipschitz continuous boundaries, however, obtaining accurate solutions using the standard Nyström method can require high resolution. We adapt a technique known as recursively compressed inverse preconditioning to accurately solve the Stokes equations without requiring any more resolution than is needed to resolve the boundary. Combined with a periodic fast summation method we construct a method that is O(N log N) where N is the number of quadrature points on the boundary. We demonstrate the robustness of this method by extending an existing boundary integral method for viscous drops to handle the movement of drops near corners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.