Male reproductive tissues are strongly susceptible to several environmental and lifestyle stressors. In general, male reproductive health is highly sensitive to oxidative stress, which results in reversible and/or irreversible changes in testosterone-producing cells, spermatogenesis, and sperm quality. Chromium compounds are widely used in the +3 and +6 valence states, as food supplements, and in the industrial field, respectively. Chromium (III) compounds, i.e., Cr(III)-tris-picolinate, [Cr(pic)3], known as chromium picolinate, are used as nutritional supplements for the control of diabetes, body weight, and muscular growth. However, previous studies showed that animal models exposed to chromium picolinate experienced degenerative changes in spermatogenesis. Contradictory results are documented in the literature and deserve discussion. Furthermore, the long-term effects of chromium picolinate on the antioxidant system of treated subjects have not been properly studied. Comprehensive studies on the role of this compound will help to establish the safe and useful use of chromium supplementation. On the other hand, chromium (VI) compounds are widely used in several industries, despite being well-known environmental pollutants (i.e., welding fumes). Chromium (VI) is known for its deleterious effects on male reproductive health as toxic, carcinogenic, and mutagenic. Previous studies have demonstrated severe lesions to mouse spermatogenesis after exposure to chromium (VI). However, workers worldwide are still exposed to hexavalent chromium, particularly in electronics and military industries. Data from the literature pinpoints mechanisms of oxidative stress induced by chromium compounds in somatic and germ cells that lead to apoptosis, thus underlining the impairment of fertility potential. In this review, we analyze the benefits and risks of chromium compounds on male fertility, as well as the mechanisms underlying (in)fertility outcomes. Although supplements with antioxidant properties may maximize male fertility, adverse effects need to be investigated and discussed.
In recent decades, an increasing incidence of male infertility has been reported. Interestingly, and considering that pesticides have been used for a long time, the high incidence of this pathological state is concomitant with the increasing use of these chemicals, suggesting they are contributors for the development of human infertility. Data from literature highlight the ability of certain pesticides and/or their metabolites to persist in the environment for long periods of time, as well as to bioaccumulate in the food chain, thus contributing for their chronic exposure. Furthermore, pesticides can act as endocrine disrupting chemicals (EDCs), interfering with the normal function of natural hormones (which are responsible for the regulation of the reproductive system), or even as obesogens, promoting obesity and associated comorbidities, like infertility. Several in vitro and in vivo studies have focused on the effects and possible mechanisms of action of these pesticides on the male reproductive system that cause sundry negative effects, even though through diverse mechanisms, but all may lead to infertility. In this review, we present an up-to-date overview and discussion of the effects, and the metabolic and molecular features of pesticides on somatic cells and germinal tissues that affect germ cell differentiation.
Background Late‐onset hypogonadism (LOH) is a condition defined by low levels of testosterone (T), occurring in advanced age. LOH is promoted by senescence, which, in turn, has negative effects on male fertility. Interestingly, the impact of metabolic disorders on the male reproductive system has been the topic of several studies, but the association with LOH is still debatable. Objectives Herein, we discuss the hypothesis that the prevalence of metabolic abnormalities potentiates the effects of LOH on the male reproductive system, affecting the reproductive potential of those individuals. Material and methods We analyzed the bibliography available, until June 2019, about LOH in relation to metabolic and hormonal dysregulation, sperm quality profiles and assisted‐reproduction treatment outcomes. Results LOH affects the hypothalamic‐pituitary testis (HPT) axis. Additionally, metabolic disorders can also induce T deficiency, which is reflected in decreased male fertility, highlighting a possible connection. Indeed, T replacement therapy (TRT) is widely used to restore T levels. Although this therapy is unable to reverse all deleterious effects promoted by LOH on male reproductive function, it can improve metabolic and reproductive health. Discussion and Conclusions Emerging new evidence suggests that metabolic disorders may aggravate LOH effects on the fertility potential of males in reproductive age, by enhancing T deficiency. These results clearly show that metabolic disorders, such as obesity and diabetes, have a greater impact on causing hypogonadotropic hypogonadism than tissue senescence. Further, TRT and off‐label alternatives capable of restoring T levels appear as suitable to improve LOH, while also counteracting comorbidities related with metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.