In this paper, a pilot production process for mesenchymal stem/stromal freeze-dried secretome was performed in a validated good manufacturing practice (GMP)-compliant cell factory. Secretome was purified from culture supernatants by ultrafiltration, added to cryoprotectant, lyophilized and characterized. We obtained a freeze-dried, “ready-off-the-shelf” and free soluble powder containing extracellular vesicles and proteins. In the freeze-dried product, a not-aggregated population of extracellular vesicles was detected by nanoparticle tracking analysis; Fourier transform infrared spectra showed the simultaneous presence of protein and lipids, while differential scanning calorimetry demonstrated that lyophilization process successfully occurred. A proteomic characterization allowed the identification of proteins involved in immune response, response to stress, cytoskeleton and metabolism. Moreover, the product was not cytotoxic up to concentrations of 25 mg/mL (on human fibroblasts, chondrocytes and nucleus pulposus cells by MTT assay) and was blood compatible up to 150 mg/mL. Finally, at concentrations between 5 and 50 mg/mL, freeze-dried secretome showed to in vitro counteract the oxidative stress damage induced by H2O2 on nucleus pulposus cells by MTT assay.
From the end of 2019, the world population has been faced the spread of the novel coronavirus SARS-CoV-2 responsible for COVID-19 infection. In approximately 14% of the patients affected by the novel coronavirus, the infection progresses with the development of pneumonia that requires mechanical ventilation. At the moment, there is no specific antiviral treatment recommended for the COVID-19 pandemic and the therapeutic strategies to deal with the infection are only supportive. In our opinion, mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 pneumonia, due to the broad pharmacological effects it shows, including anti-inflammatory, immunomodulatory, regenerative, pro-angiogenic and anti-fibrotic properties.
Silk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications. Conversely, the potential of silk sericin (SS), which forms the external shell of silk, could still be considered under evaluation. At the best of our knowledge, nanoparticles based on silk sericin "alone" cannot be produced, due to its physicochemical instability influenced by extreme pH, high water solubility and temperature; for these reasons, it almost always needs to be combined with other polymers for the development of drug delivery systems. In this review, we focused on silk proteins as bioactive natural carriers, since they show not only optimal features as inert excipients, but also remarkable intrinsic biological activities. SF has anti-inflammatory properties, while SS presents antioxidant, anti-tyrosine, anti-aging, anti-elastase and anti-bacterial features. Here, we give an overview on SF or SS silk-based nanosystems, with particular attention on the production techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.