In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.
Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.
Glioblastoma multiforme (GBM) is a lethal disease characterized by an overall survival of about 1 year, making it one of the most aggressive tumours, with very limited therapeutic possibilities. Specific biomarkers for early diagnosis as well as innovative therapeutic strategies are urgently needed to improve the management of this deadly disease. In this work, we demonstrated that vesicular galectin‐3‐binding protein (LGALS3BP), a glycosylated protein overexpressed in a variety of human malignancies, is a potential GBM disease marker and can be efficiently targeted by a specific antibody–drug conjugate (ADC). Immunohistochemical analysis on patient tissues showed that LGALS3BP is highly expressed in GBM and, compared with healthy donors, the amount of vesicular but not total circulating protein is increased. Moreover, analysis of plasma‐derived extracellular vesicles from mice harbouring human GBM revealed that LGALS3BP can be used for liquid biopsy as a marker of disease. Finally, an ADC targeting LGALS3BP, named 1959‐sss/DM4, specifically accumulates in tumour tissue, producing a potent and dose‐dependent antitumor activity. In conclusion, our work provides evidence that vesicular LGALS3BP is a potential novel GBM diagnostic biomarker and therapeutic target deserving further preclinical and clinical validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.