Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
SUMMARYIn nature, plants have to cope with a wide range of stress conditions that often occur simultaneously or in sequence. To investigate how plants cope with multi-stress conditions, we analyzed the dynamics of whole-transcriptome profiles of Arabidopsis thaliana exposed to six sequential double stresses inflicted by combinations of: (i) infection by the necrotrophic fungus Botrytis cinerea, (ii) herbivory by chewing larvae of Pieris rapae, and (iii) drought stress. Each of these stresses induced specific expression profiles over time, in which one-third of all differentially expressed genes was shared by at least two single stresses. Of these, 394 genes were differentially expressed during all three stress conditions, albeit often in opposite directions. When two stresses were applied in sequence, plants displayed transcriptome profiles that were very similar to the second stress, irrespective of the nature of the first stress. Nevertheless, significant first-stress signatures could be identified in the sequential stress profiles. Bioinformatic analysis of the dynamics of coexpressed gene clusters highlighted specific clusters and biological processes of which the timing of activation or repression was altered by a prior stress. The first-stress signatures in second stress transcriptional profiles were remarkably often related to responses to phytohormones, strengthening the notion that hormones are global modulators of interactions between different types of stress. Because prior stresses can affect the level of tolerance against a subsequent stress (e.g. prior herbivory strongly affected resistance to B. cinerea), the first-stress signatures can provide important leads for the identification of molecular players that are decisive in the interactions between stress response pathways.
SummaryBelow ground, microbe‐associated molecular patterns (MAMPs) of root‐associated microbiota can trigger costly defenses at the expense of plant growth. However, beneficial rhizobacteria, such as Pseudomonas simiae WCS417, promote plant growth and induce systemic resistance without being warded off by local root immune responses. To investigate early root responses that facilitate WCS417 to exert its plant‐beneficial functions, we performed time series RNA‐Seq of Arabidopsis roots in response to live WCS417 and compared it with MAMPs flg22417 (from WCS417), flg22Pa (from pathogenic Pseudomonas aeruginosa) and fungal chitin. The MAMP transcriptional responses differed in timing, but displayed a large overlap in gene identity. MAMP‐upregulated genes are enriched for genes with functions in immunity, while downregulated genes are enriched for genes related to growth and development. Although 74% of the transcriptional changes inflicted by live WCS417 overlapped with the flg22417 profile, WCS417 actively suppressed more than half of the MAMP‐triggered transcriptional responses, possibly to allow the establishment of a mutually beneficial interaction with the host root. Interestingly, the sector of the flg22417‐repressed transcriptional network that is not affected by WCS417 has a strong auxin signature. Using auxin response mutant tir1afb2afb3, we demonstrate a dual role for auxin signaling in finely balancing growth‐promoting and defense‐eliciting activities of beneficial microbes in plant roots.
Melatonin involvement in apoptotic processes is a new and relevant field of investigation. Even in tumor models unresponsive to melatonin alone, this hormone can significantly amplify the cytostatic and the cytotoxic effects triggered by other compounds or conventional drugs. We are far from having a satisfactory understanding about how and when melatonin exerts its beneficial effects. Melatonin in the nanomolar range activates the intrinsic and/or the extrinsic apoptotic pathway in cancer cells, namely through an increase in the p53/MDM2p ratio and downregulation of Sirt1. This finding is of great relevance since there is intense research ongoing to identify nontoxic feasible inhibitors of MDM2 and Sirt1. Melatonin should be evaluated for the management of those cancers where both of these are overexpressed and functionally strategic.
Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.