Background Neutralizing-antibody (nAb) is the major focus of most ongoing COVID-19 vaccine trials. However, nAb response against SARS-CoV-2, when present, decays rapidly. Given the myriad roles of antibodies in immune responses, it is possible that antibodies could also mediate protection against SARS-CoV-2 via effector mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), which we sought to explore here. Methods Plasma of 3 uninfected controls and 20 subjects exposed to, or recovering from, SARS-CoV-2 infection were collected from U.S. and sub-Saharan Africa. Immunofluorescence assay was used to detect the presence of SARS-CoV-2 specific IgG antibodies in the plasma samples. SARS-CoV-2 specific neutralizing capability of these plasmas was assessed with SARS-CoV-2 spike pseudotyped virus. ADCC activity was assessed with a calcein release assay. Results SARS-CoV-2 specific IgG antibodies were detected in all COVID-19 subjects studied. All but three COVID-19 subjects contained nAb at high potency (>80% neutralization). Plasma from 19/20 of COVID-19 subjects also demonstrated strong ADCC activity against SARS-CoV-2 spike glycoprotein, including two individuals without nAb against SARS-CoV-2. Conclusion Both neutralizing and non-neutralizing COVID-19 plasmas can mediate ADCC. Our findings argue that evaluation of potential vaccines against SARS-CoV-2 should include investigation of the magnitude and durability of ADCC, in addition to nAb.
In sub-Saharan Africa, endemic Kaposi's sarcoma (EnKS) is still prevalent despite high incidence of epidemic Kaposi's sarcoma (EpKS) resulting from the ongoing HIV-1 epidemic. While KSHV is clearly the etiologic agent of KS, the mechanisms underlying KS development are not fully understood. For example, HIV-1 co-infection and concomitant immune dysfunction have been associated with EpKS development. However, the direct or indirect role(s) of HIV-1, and therefore of immune suppression, in EpKS remains unclear. How, or whether, EpKS is mechanistically distinct from EnKS is unknown. Thus, the absence of HIV-1 co-infection in EnKS provides a unique control for investigating and deciphering whether HIV-1 plays a direct or indirect role in the EpKS tumor microenvironment. We hypothesized that HIV-1 co-infection would induce transcriptome changes that differentiate EpKS from EnKS, thereby defining the direct intra-tumor role of HIV-1 in KS. Comparison of ARTtreated and-naïve patients would further define the impact of ART on the KS transcriptome. We utilized RNA-seq followed by multiparameter bioinformatics analysis to compare transcriptomes from KS lesions to uninvolved control skin. We provide the first transcriptomic comparison of EpKS versus EnKS, ART-treated vs-naïve EpKS and male vs female EpKS to define the roles of HIV-1 co-infection, the impact of ART, and gender on KS gene expression profiles. Our findings suggest that ART-use and gender have minimal impact on transcriptome profiles of KS lesions. Gene expression profiles strongly correlated between EpKS and EnKS patients (Spearman r = 0.83, p<10 −10). A subset of genes involved in tumorigenesis and inflammation/immune responses showed higher magnitude, but not unique dysregulation in EnKS compared to EpKS. While gender and ART had no detectable contribution, the trend toward higher magnitude of gene dysregulation in EnKS coupled with
The humoral antibody response against Kaposi sarcoma-associated herpesvirus (KSHV) in infected individuals has been characterized demonstrating the latency-associated nuclear antigen (LANA) as the most antigenic KSHV protein. Despite the antigenicity of the protein, specific LANA epitopes have not been systematically characterized. Here, we utilized a bacteriophage T7 library, which displays 56-amino acid KSHV LANA peptides with 28-amino acid overlap (VirScan), to define those epitopes in LANA targeted by antibodies from a cohort of 62 sub-Saharan African Kaposi Sarcoma (KS) patients and 22 KSHV-infected asymptomatic controls. Intra- and inter-patient breadth and magnitude of the anti-LANA responses were quantified at the peptide and amino acid levels. From these data, we derived a detailed epitope annotation of the entire LANA protein, with a high-resolution focus on the N- and C-termini. Overall, the central repeat region was highly antigenic, but the responses to this region could not be confidently mapped due to its high variability. The highly conserved N-terminus was targeted with low breadth and magnitude. In a minority of individuals, antibodies specific to the nuclear localization sequence and a portion of the proline-rich regions of the N-terminus were evident. In contrast, the first half of the conserved C-terminal domain was consistently targeted with high magnitude. Unfortunately, this region was not included in LANA partial C-terminal crystal structures, however, it was predicted to adopt predominantly random-coil structure. Coupled with functional and secondary structure domain predictions, VirScan revealed fine resolution epitope mapping of the N- and C-terminal domains of LANA that is consistent with previous antigenicity studies and may prove useful to correlate KSHV humoral immunity with pathogenesis.
Vaccination offers the most cost-effective approach to limiting the adverse impact of infectious and neoplastic diseases that reduce the quality of life in sub-Saharan Africa (SSA). However, it is unclear what vaccine vectors would be most readily implementable in the setting and at what age they should be applied for maximal efficacy. Adenoviruses (Ad) and Ad-based vectors have been demonstrated to induce effective humoral and cellular immune responses in animal models and in humans. However, because immunity associated with Ad infection is lifelong, there exists a debate as to whether pre-existing immunity might decrease the efficacy of Ad vectored vaccines. In order to begin to rationally develop vaccination strategies for SSA, we have quantified neutralizing antibodies (nAb) against Ad4, Ad5, Ad7, Ad26, Ad28, Ad45 and Ad48 in 67 adult women and their infants. We are the first to define the decay kinetics of transferred maternal nAb in infants as well as the digitalcommons.unl.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.