Liquidity and volatility are the two barometers that allow stock markets to appreciate in terms of attractiveness, profitability and efficiency. Several macroeconomic and microstructure variables condition the level of liquidity that directly impact the asset allocation decisions of different investor profiles − institutional and individuals − and therefore the dynamics of the market as a whole. Volatility is the regulatory component that provides information on the level of risk that characterizes the market. Thus, the appreciation of these two elements is of considerable help to fund managers looking to optimize their equity pockets. In this work, we will use the liquidity ratio as a proxy variable for the liquidity of the Moroccan stock market, to estimate the indicators and factors that determine its short- and long-term variability. The appropriate econometric method would be to estimate an error correction vector model (ECVM) which has the property of determining the long- and short-term relationships between the variables. The volatility of the MASI index will be the subject of a second estimate to capture the shape of the function of its evolution.
Derivatives markets show that their structure is always characterized by periods of strong price fluctuations. This is true regardless of the underlying asset of the futures contracts considered, whether they are commodities, interest rates, exchange rates, shares, stock market indices, etc. By locking in future prices, the primary objective of these markets is to limit the risks faced by operators. This article proposes a new method of optimizing the coverage ratio by futures contracts to minimize price variance and thus apply this new technique to reduce the risk associated with Brent price volatility for the period from January 2010 to December 2020. The variance minimization model of Ederington's (1979) is the first and most widely used coverage model and the one that dominates the literature on this area which helps to find the optimal coverage ratio, and is also the objective function in our particle assay optimization algorithm in MATLAB and we will better interpret our results with statistical analysis and lastly, we will evaluate the effectiveness of the coverage model.
La métaheuristique connue sous le nom d'algorithme d'optimisation ; une résolution de problèmes difficiles de minimisation ou de maximisation d'une fonction afin de trouver des solutions quasi optimales. Il existe une grande variété de métaheuristiques, mais dans cet article de recherche, nous ne parlerons que de trois algorithmes d'optimisation qui vont nous aider à optimiser le cout de l'emballage d'une industrie en utilisant le logiciel MATLAB pour les programmer. Le premier algorithme est l'optimisation des essaims de particules le plus connu dans le domaine d'optimisation, qui est inspiré par le mouvement de simulation d'un groupe d'oiseaux, le second est le recuit simulé inspiré du recuit en métallurgie, une technique de traitement thermique impliquant également refroidissement contrôlé d'un matériau qui affecte à la fois la température et l'énergie. Et le dernier est l'algorithme génétique qui est couramment utilisé pour donner des résultats de haute qualité aux problèmes d'optimisation en s'appuyant sur des opérateurs bio-inspirés tels que la mutation, le croisement et la sélection. Nous comparerons la performance de chacun d'entre eux à l'aide des fonctions tests en fonction de leur durée de fonctionnement et de leur convergence et seront appliquer sur notre problème d'optimisation industriel. ABSTRACT. The metaheuristic known as the optimization algorithm; a resolution of difficult problems of minimization or maximization of a function in order to find almost optimal solutions. There are a wide variety of metaheuristics, but in this research article we will only talk about three optimization algorithms that will help us optimize the cost of packaging an industry by using MATLAB software to program them. The first algorithm is the best-known particle swarm optimization in the optimization field, which is inspired by the simulation movement of a group of birds, the second is the simulated annealing inspired by annealing in metallurgy, a Heat treatment technique also involving controlled cooling of a material which affects both temperature and energy. And the last is the genetic algorithm which is commonly used to give high quality results to optimization problems by relying on bio-inspired operators such as mutation, crossing and selection. We will compare the performance of each of them using the test functions according to their uptime and convergence and will apply to our industrial optimization problem.
Les chercheurs et développeurs scientifiques ont aujourd'hui une énorme quantité de données à traiter. Ils ont besoin des solutions efficaces et rapides pour traiter et modéliser ces données. C'est pour cela qu'ils ont développé une métaheuristique basée sur l'évolution génétique naturelle. L'algorithme génétique ne prend pas en compte toutes les alternatives, mais c'est une technique rapide pour trouver une solution décente aux problèmes caractérisés par un flux importants de données. Dans de nombreux domaines, les données doivent être traitées dans le plus bref délai et dans cet article nous avons traité une nouvelle façon de trouver l'optimum du ratio de couverture par les contrats à terme, pour objectif de diminuer le risque présent sur le marché des produits dérivés, relatif aux fluctuations des prix de n'importe quel actif sous-jacent des contrats à terme soit des matières premières, de taux de change ou bien d'indices boursiers… Dans notre cas nous avons choisi le pétrole comme exemple d'application sur la fluctuation des prix des matières premières sur un horizon de 10 ans en appliquant le modèle de couverture de minimisation de la variance d'Ederington comme fonction objectif de notre algorithme d'optimisation génétique sur le logiciel MATLAB. ABSTRACT. Researchers and scientific developers today have a huge amount of data to process, they need a solution as quickly as possible, which is why they have developed this metaheuristic based on natural genetic evolution. The genetic algorithm does not take into account all the alternatives, but it is a quick technique to find a decent solution to problems with a lot of data. In many areas, data must be processed as quickly as possible and in this article we have discussed a new way to find the optimum coverage ratio for futures contracts, with the objective of decreasing the risk that one must face in the derivatives market, against fluctuations in the prices of any underlying asset of the futures contracts either commodities, exchange rates or stock market indices ..., in our case we have chosen oil as an example of an application on the fluctuation of commodity prices of a 10-year data margin, by applying the Ederington variance minimization hedge model as an objective function of our genetic optimization algorithm on MATLAB software. MOTS-CLÉS. Métaheuristiques, Algorithme génétique, risque de change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.