It has been shown in animal models that ribavirin-resistant poliovirus with a G64S mutation in its 3D polymerase has high replication fidelity coupled with attenuated virulence. Here, we describe the effects of mutagenesis in the human enterovirus 71 (HEV71) 3D polymerase on ribavirin resistance and replication fidelity. Seven substitutions were introduced at amino acid position 3D-G64 of a HEV71 full-length infectious cDNA clone (26M). Viable clone-derived virus populations were rescued from the G64N, G64R, and G64T mutant cDNA clones. The clone-derived G64R and G64T mutant virus populations were resistant to growth inhibition in the presence of 1,600 M ribavirin, whereas the growth of parental 26M and the G64N mutant viruses were inhibited in the presence of 800 M ribavirin. Nucleotide sequencing of the 2C and 3D coding regions revealed that the rate of random mutagenesis after 13 passages in the presence of 400 M ribavirin was nearly 10 times higher in the 26M genome than in the mutant G64R virus genome. Furthermore, random mutations acquired in the 2C coding regions of 26M and G64N conferred resistance to growth inhibition in the presence of 0.5 mM guanidine, whereas the G64R and G64T mutant virus populations remained susceptible to growth inhibition by 0.5 mM guanidine. Interestingly, a S264L mutation identified in the 3D coding region of 26M after ribavirin selection was also associated with both ribavirin-resistant and high replication fidelity phenotypes. These findings are consistent with the hypothesis that the 3D-G64R, 3D-G64T, and 3D-S264L mutations confer resistance upon HEV71 to the antiviral mutagen ribavirin, coupled with a high replication fidelity phenotype during growth in cell culture.
IntroductionRecent studies have suggested that the VEGF inhibitors, Ranibizumab and Aflibercept may be associated with an excess of cardiovascular events, potentially driven by increasing atheroma instability, leading to plaque rupture and clinical events. Inflammation plays a key role in the progression of atherosclerotic plaque and particularly conversion to an unstable phenotype. Here, we sought to assess the in vitro effects of these drugs on the expression of key inflammatory mediators on endothelial cells.MethodsHuman coronary artery endothelial cells were co-incubated for 16h with Ranibizumab (0.11nM) or Aflibercept (0.45nM), as determined by each drug’s peak serum concentration (Cmax). Expression at protein (ELISA) and gene (RT-PCR) level of inflammatory chemokines CCL2, CCL5 and CXC3L1 as well as gene expression for the cell adhesion molecules VCAM-1, ICAM-1 and the key NF-κb protein p65 was assessed. VEGF-A protein levels were also determined.ResultsBoth drugs significantly increased chemokine, cell adhesion molecule (CAM) and p65 expression, while decreasing VEGF-A protein secretion. At equivalent Cmax concentrations, Aflibercept was significantly more pro-inflammatory than Ranibizumab. Reduction of secreted VEGF-A levels significantly attenuated inflammatory effects of both drugs, whereas blockade of the VEGF-A receptor or silencing of VEGF-A gene synthesis alone had no effect, suggesting that binding of drug to secreted VEGF-A is crucial in promoting inflammation. Finally, blockade of Toll-like receptor 4 significantly reduced inflammatory effects of both drugs.ConclusionWe demonstrated here, for the first time, that both drugs have potent pro-inflammatory effects, mediated via activation of Toll-like receptor 4 on the endothelial cell surface by drug bound to VEGF-A. Further studies are required to investigate whether these effects are also seen in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.