The health of the brain and muscles depends on the proper analysis of electroencephalogram and electromyogram signals without noise. The latter blends into the recording of biomedical signals for external or internal reasons of the human body. Therefore, to obtain a more accurate signal, it is needed to select filtering techniques that minimize the noise. In this study, the techniques used are empirical mode decomposition and its variants. Among the new versions of variants is the improved complete ensemble empirical mode decomposition with adaptive noise. These methods are applied to electroencephalogram and electromyogram signals corrupted by natural noise and white Gaussian noise. The obtained results through the use of the improved complete ensemble empirical mode decomposition with adaptive noises how the high performance that includes minimizing the noise and the effectiveness of the components of the signals used in the present research. This method has low values of the mean square error and high values of signal-to-noise ratio compared to other methods used in this study.
<span lang="EN-US">In this paper, a simultaneous application of geometric modification on patch elements and electromagnetic band gap (EBG) electromagnetic bandgap structures (hybrid method) has been suggested for 3.5 GHz wireless communication applications, to minimize the mutual coupling between radiating elements of microstrip array antennas. The suggested EBG slotted structure is composed of a one square ring and three squares placed on Rogers RO3010 having 10.2 and h=1.27 mm which presents respectively its dielectric constant and thickness. In this approach, the patch elements are geometrically modified, while also employing EBG structures, formed by four EBG cells, placed between the array elements at a near distance. The modification of the geometry of the antenna and the introduction of EBG reduces the mutual coupling of an array antenna with approximately 33 dB on the one hand and improves the antenna gain by approximately 0.43 dB on the other hand. Initially, slots are introduced in the patch geometry and then four EBG unit cells are inserted between two patches, operating at 3.5 GHz. The antenna array design parameters were optimized.</span>
In this paper, a new array antenna configuration based on Electromagnetic Band Gap (EBG) structures has been proposed for 3.5GHz wireless communication systems. The proposed slotted EBG structure, high impedance surface (SHI), consists of three squares and a square ring deposited on a substrate (Rogers RO4350) which has a relative permittivity of 10.2 and a thickness of 1.27mm. Initially a matrix of 3×7 unit cells of EBG structures is introduced between two patches of an array and then a matrix of 3×14 unit cell of EBG structures is integrated between eight patches, which resonate around 3.5GHz (Wi MAX). The insertion of these structures between the radiating elements of an array antenna reduces the mutual coupling and antenna dimensions by approximately (8dB, 11%) and (12 dB, 5%) respectively for two, eight elements array antenna. In addition, the directivity has been slightly improved in the presence of EBG structures, from 4.52dB to 6.09dB for a two-element array antenna, and from 8.18dB to 8.4dB for an eight-element antenna.
This paper presents the design of highly efficient rectifiers that can operate at WiFi frequencies (2.45 GHz and 5.8 GHz) and match low input power. The designed dual-band rectifiers use multi-stage dickson voltage multipliers (DVM) (from 1 to 6 stages), and the main idea of this paper is to find the number of stages that offers the best performance and that can be used by applications that operate within the same constraints (operating frequencies, input power). The efficiency and the output voltage (Vout) are the parameters studied to analyze the designed rectifiers. The results showed that as the number of DVM stages increased, the efficiency curves for both frequencies shifted to the higher input power range, even when using the same diode (SMS7630) and the same load (5 KΩ). We concluded that the rectifier with 1-stage DVM is the most suitable to be used for low input power at the selected frequencies since it provides an efficiency of 57.734% at 0 dBm for 2.45 GHz and 36.225% at 1 dBm of input power for 5.8 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.