Acyclic nucleoside phosphonates (ANPs) are nowadays one of the key drugs in the treatment of DNA virus and retrovirus infections. In this work, we report the synthesis and antiviral evaluation of phosphonoamidate and diamidates prodrugs of C5-pyrimidine acyclic nucleosides derivatives functionalized with but-2-enyl- chain. In the phosphonoamidate series, the most active compound 15, showed sub-micromolar activity against varicella zoster virus (VZV) (EC = 0.09-0.5 μM) and μM activity against human cytomegalovirus (HCMV) and herpes simplex virus (HSV). Separation of single diastereoisomers for compound 14, showed that 14b had better anti-herpesvirus activity and no cytotoxicity compared to the diastereoisomeric mixture 14. Very interestingly, phosphonodiamidate 21 showed anti-herpesvirus activity with excellent activity against wild type and thymidine kinase-deficient (TK) VZV strains (EC = 0.47 and 0.2 μM, respectively) and HCMV (EC = 3.5-7.2 μM) without any cytotoxicity (CC > 100).
Background
Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism.
Results
Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the downstream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35.
Conclusions
All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compromise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their lifespan.
The discovery of various sartans, which are among the most used antihypertensive drugs in the world, is increasingly frequent not only in wastewater but also in surface water and, in some cases, even in drinking or groundwater. In this paper, the degradation pathway of olmesartan acid, one of the most used sartans, was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants. The structures of nine isolated degradation byproducts (DPs), eight of which were isolated for the first time, were separated via chromatography column and HPLC methods, identified by combining nuclear magnetic resonance and mass spectrometry, and justified by a proposed mechanism of formation beginning from the parent drug. Ecotoxicity tests on olmesartan acid and its nine DPs showed that 50% of the investigated byproducts inhibited the target species Aliivibrio fischeri and Raphidocelis subcapitata, causing functional decreases of 18% and 53%, respectively.
Polycyclic aromatic hydrocarbons (PAHs) consist of a group of over 100 different organic compounds mainly generated by anthropogenic activities. Because of their low water solubility, they tend to be accumulated in sediment, where their degradation rate is very low. Few studies have been carried out so far to investigate the effects of PAHs on Artemia franciscana. Artemia is easy to manage at laboratory scale, but it is not a sensitive biological model considering the traditional endpoints (i.e., mortality). In addition to evaluating the lethality on nauplii and adults of A. franciscana after 24 and 48 h, we focused on the genotoxicity to investigate the potential effects of phenanthrene (PHE), naphthalene (NAP), fluoranthene (FLT), and benzo(k)fluoranthene (BkF). Results showed that FLT was the most toxic both for nauplii and adults after 48 h of exposure. Real-time qPCR showed that all toxicants, including BkF, which had no negative effects on the survival of the crustacean, were able to switch the gene expression of all nine genes. This work has important ecological implications, especially on contaminated sediment assessment considering that PAHs represent the most abundant organic group of compounds in marine environment, opening new perspectives in understanding the molecular pathways activated by crustaceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.