Optical coherence tomography (OCT) enables non-invasive depth-resolved investigation of laryngeal tissue. However, with conventional systems, OCT cross-sectional images of vibrating vocal cords always suffer from motion artifacts. This is the case even at low phonation frequencies of about 100 Hz. Motion artifacts of predictable repetitive movements can be avoided with carefully timed acquisitions. Irregular, non-repetitive movements, e.g. disturbed vocal cord vibration caused by laryngeal disorders, require different strategies, such as the use of high frame rates. We present a novel concept for dynamic vocal cord imaging with a high speed 1.6 MHz swept-source OCT system. Due to the high image rate, a graphics processing unit (GPU) based signal processing software has been developed in order to obtain real time OCT images. To demonstrate the feasibility of our approach on vibrating samples, we present a laboratory setup which includes a MHz swept source for OCT. To enable the transfer of our setup to clinical applications a concept for a curved rigid laryngoscope design, integrating the optical components for high-speed OCT, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.