Traumatic brain injury (TBI) causes progressive dysfunction that induces biochemical and metabolic changes that lead to cell death. Nevertheless, there is no definitive FDA-approved therapy for TBI treatment. Our previous immunohistochemical results indicated that the cost-effective natural Iranian medicine, Satureja khuzistanica Jamzad essential oil (SKEO), which consists of 94.16% carvacrol (CAR), has beneficial effects such as reducing neuronal death and inflammatory markers, as well as activating astrocytes and improving neurological outcomes. However, the molecular mechanisms of these neuroprotective effects have not yet been elucidated. This study investigated the possible mechanisms involved in the anti-inflammatory and anti-apoptotic properties of SKEO and CAR after TBI induction. Eighty-four male Wistar rats were randomly divided into six groups: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg), and TBI + SKEO (200 mg/kg) groups. After establishing the “Marmarou” weight drop model, diffuse TBI was induced in the rat brain. Thirty minutes after TBI induction, SKEO & CAR were intraperitoneally injected. One day after TBI, injured rats exhibited significant brain edema, neurobehavioral dysfunctions, and neuronal apoptosis. Western blot results revealed upregulation of the levels of cleaved caspase-3, NFκB p65, and Bax/Bcl-2 ratio, which was attenuated by CAR and SKEO (200 mg/kg). Furthermore, the ELISA results showed that CAR treatment markedly prevents the overproduction of the brain pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. Moreover, the neuron-specific enolase (NSE) immunohistochemistry results revealed the protective effect of CAR and SKEO on post-TBI neuronal death. The current study revealed that the possible neuroprotective mechanisms of SKEO and CAR might be related to (at least in part) modulating NF-κB regulated inflammation and caspase-3 protein expression. It also suggested that CAR exerts more potent protective effects than SKEO against TBI. Nevertheless, the administration of SKEO and CAR may express a novel therapeutic approach to ameliorate TBI-related secondary phase neuropathological outcomes.
Acute progesterone injection has been shown to reduce brain edema following traumatic brain injury (TBI) due to its neuroprotective effect. We investigated the effects of sustained release of progesterone through implantation of subcutaneous capsules on rat's brain edema and alteration of cerebrospinal fluid (CSF), and serum ratio of NGF/ IL-6 after TBI. This experiment was performed on ovariectomized (OVX) rats and the brain injury was induced by Marmarou's method. A high and a low dose of progesterone (HP and LP) was injected intraperitoneally two h after the brain injury. In addition, in the capsule progesterone-treated group (CP), the intervention was implemented 6 h after the brain injury. Brain edema, NGF and IL-6 biomarkers in serum and cerebrospinal fluid (CSF) were measured 48 h after the TBI in injection groups and one week after the TBI in the CP group. No significant difference was found in the two groups or in the admonition methods. After TBI, the NGF level increased and IL-6 level decreased by injection of both doses, as well as by taking the capsule. Ratio of NGF/IL-6 in CSF increased significantly by all forms of progesterone administration. The increase in the level of NGF and IL-6 after TBI was higher in CSF than in serum. These results indicated that effects of progesterone in capsule form were better than the injection form. Progesterone probably works by increasing NGF and reducing IL-6. Future studies should investigate the ratio of these biomarkers as a variable to determine the neuroprotective effects of another drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.