BackgroundRemote measurement technology refers to the use of mobile health technology to track and measure change in health status in real time as part of a person’s everyday life. With accurate measurement, remote measurement technology offers the opportunity to augment health care by providing personalized, precise, and preemptive interventions that support insight into patterns of health-related behavior and self-management. However, for successful implementation, users need to be engaged in its use.ObjectiveOur objective was to systematically review the literature to update and extend the understanding of the key barriers to and facilitators of engagement with and use of remote measurement technology, to guide the development of future remote measurement technology resources.MethodsWe conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines involving original studies dating back to the last systematic review published in 2014. We included studies if they met the following entry criteria: population (people using remote measurement technology approaches to aid management of health), intervention (remote measurement technology system), comparison group (no comparison group specified), outcomes (qualitative or quantitative evaluation of the barriers to and facilitators of engagement with this system), and study design (randomized controlled trials, feasibility studies, and observational studies). We searched 5 databases (MEDLINE, IEEE Xplore, EMBASE, Web of Science, and the Cochrane Library) for articles published from January 2014 to May 2017. Articles were independently screened by 2 researchers. We extracted study characteristics and conducted a content analysis to define emerging themes to synthesize findings. Formal quality assessments were performed to address risk of bias.ResultsA total of 33 studies met inclusion criteria, employing quantitative, qualitative, or mixed-methods designs. Studies were conducted in 10 countries, included male and female participants, with ages ranging from 8 to 95 years, and included both active and passive remote monitoring systems for a diverse range of physical and mental health conditions. However, they were relatively short and had small sample sizes, and reporting of usage statistics was inconsistent. Acceptability of remote measurement technology according to the average percentage of time used (64%-86.5%) and dropout rates (0%-44%) was variable. The barriers and facilitators from the content analysis related to health status, perceived utility and value, motivation, convenience and accessibility, and usability.ConclusionsThe results of this review highlight gaps in the design of studies trialing remote measurement technology, including the use of quantitative assessment of usage and acceptability. Several processes that could facilitate engagement with this technology have been identified and may drive the development of more person-focused remote measurement technology. However, these factors need further t...
Unlike people who have other chronic health conditions, PWE appeared not to be at risk of digital exclusion. This study highlighted a great interest in the use of wearable technology across epilepsy service users, carers, and healthcare professionals, which was independent of demographic and clinical factors and outpaced data security and technology usability concerns.
Background In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. Objective We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)–base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. Methods We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. Results We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. Conclusions RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.
Background There is a growing body of literature highlighting the role that wearable and mobile remote measurement technology (RMT) can play in measuring symptoms of major depressive disorder (MDD). Outcomes assessment typically relies on self-report, which can be biased by dysfunctional perceptions and current symptom severity. Predictors of depressive relapse include disrupted sleep, reduced sociability, physical activity, changes in mood, prosody and cognitive function, which are all amenable to measurement via RMT. This study aims to: 1) determine the usability, feasibility and acceptability of RMT; 2) improve and refine clinical outcome measurement using RMT to identify current clinical state; 3) determine whether RMT can provide information predictive of depressive relapse and other critical outcomes. Methods RADAR-MDD is a multi-site prospective cohort study, aiming to recruit 600 participants with a history of depressive disorder across three sites: London, Amsterdam and Barcelona. Participants will be asked to wear a wrist-worn activity tracker and download several apps onto their smartphones. These apps will be used to either collect data passively from existing smartphone sensors, or to deliver questionnaires, cognitive tasks, and speech assessments. The wearable device, smartphone sensors and questionnaires will collect data for up to 2-years about participants’ sleep, physical activity, stress, mood, sociability, speech patterns, and cognitive function. The primary outcome of interest is MDD relapse, defined via the Inventory of Depressive Symptomatology- Self-Report questionnaire (IDS-SR) and the World Health Organisation’s self-reported Composite International Diagnostic Interview (CIDI-SF). Discussion This study aims to provide insight into the early predictors of major depressive relapse, measured unobtrusively via RMT. If found to be acceptable to patients and other key stakeholders and able to provide clinically useful information predictive of future deterioration, RMT has potential to change the way in which depression and other long-term conditions are measured and managed. Electronic supplementary material The online version of this article (10.1186/s12888-019-2049-z) contains supplementary material, which is available to authorized users.
BackgroundAccess to internet-enabled technology and Web-based services has grown exponentially in recent decades. This growth potentially excludes some communities and individuals with mental health difficulties, who face a heightened risk of digital exclusion. However, it is unclear what factors may contribute to digital exclusion in this population.ObjectiveTo explore in detail the problems of digital exclusion in mental health service users and potential facilitators to overcome them.MethodsWe conducted semistructured interviews with 20 mental health service users who were deemed digitally excluded. We recruited the participants from a large secondary mental health provider in South London, United Kingdom. We employed thematic analysis to identify themes and subthemes relating to historical and extant reasons for digital exclusion and methods of overcoming it.ResultsThere were three major themes that appeared to maintain digital exclusion: a perceived lack of knowledge, being unable to access the necessary technology and services owing to personal circumstances, and the barriers presented by mental health difficulties. Specific facilitators for overcoming digital exclusion included intrinsic motivation and a personalized learning format that reflects the individual’s unique needs and preferences.ConclusionsMultiple factors contribute to digital exclusion among mental health service users, including material deprivation and mental health difficulties. This means that efforts to overcome digital exclusion must address the multiple deprivations individuals may face in the offline world in addition to their individual mental health needs. Additional facilitators include fostering an intrinsic motivation to overcome digital exclusion and providing a personalized learning format tailored to the individual’s knowledge gaps and preferred learning style.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.