Abstract. Thrombospondin-1 (TSP1) is a large modular matrix protein containing three identical disulfidelinked 180-kD chains that inhibits neovascularization in vivo (Good et al., 1990). To determine which of the structural motifs present in the 180-kD TSP1 polypeptide mediate the anti-angiogenic activity, a series of protease-generated fragments were tested using several in vitro and in vivo assays that reflect angiogenic activity. The majority of the anti-angiogenic activity of TSP1 resides in the central 70-kD stalk region which alone could block neovascularization induced by bFGF in the rat cornea in vivo and inhibit both migration in a modified Boyden chamber and [~H]thymidine incorporation stimulated by bFGF in cultured capillary endothelial cells. Although TSP1 has been shown to bind active TGF/31, this cytokine could not account for the inhibitory effects of the stalk region of TSP1 on cultured endothelial cells.Peptides and truncated molecules were used to further localize inhibitory activity to two domains of the central stalk, the procollagen homology region and the properdin-like type 1 repeats. Trimeric recombinant TSP1 containing NH2-terminal sequences truncated after the procollagen-like module inhibited endothelial cell migration in vitro and corneal neovascularization in vivo whereas trimeric molecules truncated before this domain were inactive as was the NH2-terminal heparin-binding domain that is present in both recombinant molecules. A series of peptides from the procollagen-like region, the smallest of which consisted of residues 303-309 of TSP1, inhibited angiogenesis in vivo in the rat cornea and the migration of endothelial cells in vitro. A 19-residue peptide containing these sequences blocked vessel formation in the granulation tissue invading a polyvinyl sponge implanted into the mouse. Nineteen residue peptides derived from two of the three type 1 repeats present in the intact TSP1 molecule blocked neovascularization in vivo in the rat cornea and inhibited the migration of cultured endothelial cells with EDs0'S of 0.6-7 #M. One of these peptides, containing residues 481-499 of TSP1, also inhibited vessel formation in granulation tissue invading sponges in vivo.These results suggest that the large TSP1 molecule employs at least two different structural domains and perhaps two different mechanisms to accomplish a sin 2 gle physiological function, the inhibition of neovascularization. The definition of short peptides from each of these domains that are able to block the angiogenic process may be of use in designing targeted inhibitors of the pathological neovascularization that underlies many diseases.
The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics.
The ability of diagnostic pulsed ultrasound to induce heritable genetic damage of the type that could result in neoplasia was assayed using BHK21/cl 13 hamster cells or normal human fibroblasts as targets. Using an exposure apparatus carefully designed to minimize beam attenuation and reflection, cavitation, and heating, cells were exposed from 20 seconds to 40 minutes either to clinical machines operating at maximum power, or to a highly focused nonclinical transducer at 2900 W/cm2, or to 200 shocks from a lithotripter. No evidence of an increase in the frequency of neoplastically transformed BHK cells or in the frequency of mutant human cells was seen over those found in matched sham‐exposed controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.