The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship "polyphenols ↔ microbiota" are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health.
Strawberry contains high levels of micronutrients and phytochemical compounds. These exhibit functional roles in plant growth and metabolism and are also essential for the nutritional and organoleptic qualities of the fruit. The aim of the present work was to better characterize the phytochemical and antioxidant profiles of the fruit of nine different genotypes of strawberry, by measuring the total flavonoid, anthocyanin, vitamin C, and folate contents. Cultivar effects on the total antioxidant capacities of strawberries were also tested. In addition, the individual contribution of the main antioxidant compounds was assessed by HPLC separation coupled to an online postcolumn antioxidant detection system. This study showed the important role played by the genetic background on the chemical and antioxidant profiles of strawberry fruits. Significant differences were found between genotypes for the total antioxidant capacity and for all tested classes of compounds. The HPLC analyses confirmed qualitative and quantitative variability in the antioxidant profiles. These studies show that differences exist among cultivars, applicable in dietary studies in human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.