Trait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs. Loss of functional synergy between 6p22lncRNAs results in an undifferentiated state that is maintained by a gene-regulatory network, including SOX9 located on 17q, a region frequently gained in NB. 6p22lncRNAs regulate SOX9 expression by controlling CHD7 stability via modulating the cellular localization of USP36, encoded by another 17q gene. This regulatory nexus between 6p22.3 and 17q regions may lead to potential NB treatment strategies.
BackgroundChronic lymphocytic leukemia (CLL) has been a good model system to understand the functional role of 5-methylcytosine (5-mC) in cancer progression. More recently, an oxidized form of 5-mC, 5-hydroxymethylcytosine (5-hmC) has gained lot of attention as a regulatory epigenetic modification with prognostic and diagnostic implications for several cancers. However, there is no global study exploring the role of 5-hydroxymethylcytosine (5-hmC) levels in CLL. Herein, using mass spectrometry and hMeDIP-sequencing, we analysed the dynamics of 5-hmC during B cell maturation and CLL pathogenesis.ResultsWe show that naïve B-cells had higher levels of 5-hmC and 5-mC compared to non-class switched and class-switched memory B-cells. We found a significant decrease in global 5-mC levels in CLL patients (n = 15) compared to naïve and memory B cells, with no changes detected between the CLL prognostic groups. On the other hand, global 5-hmC levels of CLL patients were similar to memory B cells and reduced compared to naïve B cells. Interestingly, 5-hmC levels were increased at regulatory regions such as gene-body, CpG island shores and shelves and 5-hmC distribution over the gene-body positively correlated with degree of transcriptional activity. Importantly, CLL samples showed aberrant 5-hmC and 5-mC pattern over gene-body compared to well-defined patterns in normal B-cells. Integrated analysis of 5-hmC and RNA-sequencing from CLL datasets identified three novel oncogenic drivers that could have potential roles in CLL development and progression.ConclusionsThus, our study suggests that the global loss of 5-hmC, accompanied by its significant increase at the gene regulatory regions, constitute a novel hallmark of CLL pathogenesis. Our combined analysis of 5-mC and 5-hmC sequencing provided insights into the potential role of 5-hmC in modulating gene expression changes during CLL pathogenesis.Electronic supplementary materialThe online version of this article (10.1186/s13072-018-0252-7) contains supplementary material, which is available to authorized users.
Exposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health. Previous studies suggest that ELS affects the hypothalamic epigenome, making it a good candidate to mediate these effects. In this study, we used a mouse model of early life stress (modified maternal separation; MMS). We hypothesised MMS would affect the hypothalamic transcriptome and DNA methylome, and impact on adult behaviour. MMS involved repeated stimulation of pups for 1.5 h/day, whilst separated from their mother, from postnatal day (P) 4–6. 3’mRNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing were performed on hypothalamic tissue at P6. Behaviour was assessed with the elevated plus, open field mazes and in-cage monitoring at 3–4 months of age. MMS was only associated with subtle changes in gene expression, but there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. ELS has marked effects on DNA methylation in the hypothalamus in early life and results in stress-specific hyperactivity in young adulthood. These results have implications for the understanding of ELS-mediated effects on brain development.
Early life stress during childhood is associated with a number of psychiatric disorders that manifest across the life course. Preterm birth is a profound stressor, and an important cause of cognitive impairment, as well as neurodevelopmental and psychiatric disorders. However, the mechanisms that link events during the early neonatal period with later functional problems are poorly understood. We developed a novel mouse model of early life stress (modified maternal separation; MMS) with specific relevance to preterm birth (PTB) and hypothesised it would affect the hypothalamic transcriptome and DNA methylome and impact on behaviour in adulthood. MMS consisted of repeatedly stimulating pups for 1.5 hours/day, whilst separated from their mother, from postnatal day (P)4-6. 3' RNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing was performed on the hypothalamus at P6. Behaviour was assessed with the elevated plus and open field mazes, and in-cage monitoring at 3-4 months of age. Although MMS was only associated with subtle changes in gene expression there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS also resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. In conclusion we describe a novel model of early life stress with relevance to PTB, with marked effects on DNA methylation in the hypothalamus and with stress-specific hyperactivity in young adulthood. We suggest that these results have implications for the understanding of early life stress mediated effects on brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.