Diffuse correlation spectroscopy (DCS) has widely been used as a non-invasive optical technique to measure tissue perfusion in vivo. DCS measurements are quantified to yield information about moving scatterers using photon diffusion theory and are therefore obtained at long source-detector separations (SDS). However, short SDS DCS could be used for measuring perfusion in small animal models or endoscopically in clinical studies. Here, we investigate the errors in analytically retrieved flow coefficients from simulated and experimental data acquired at short SDS. Monte Carlo (MC) simulations of photon correlation transport was programmed to simulate DCS measurements and used to (a) examine the accuracy and validity of theoretical analyses, and (b) model experimental measurements made on phantoms at short SDS. Experiments consisted of measurements from a series of optical phantoms containing an embedded flow channel. Both the fluid flow rate and depth of the flow channel from the liquid surface were varied. Inputs to MC simulations required to model experiments were obtained from corrected theoretical analyses. Results show that the widely used theoretical DCS model is robust for quantifying relative changes in flow. We also show that retrieved flow coefficients at short SDS can be scaled to retrieve absolute values via MC simulations.
It is essential to monitor tissue perfusion during and after reconstructive surgery, as restricted blood flow can result in graft failures. Current clinical procedures are insufficient to monitor tissue perfusion, as they are intermittent and often subjective. To address this unmet clinical need, a compact, low-cost, multimodal diffuse correlation spectroscopy and diffuse reflectance spectroscopy system was developed. We verified system performance via tissue phantoms and experimental protocols for rigorous bench testing. Quantitative data analysis methods were employed and tested to enable the extraction of tissue perfusion parameters. This design verification study assures data integrity in future in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.