BackgroundAnorexia nervosa is a primary psychiatric disorder, with non-negligible rates of mortality and morbidity. Some of the related alterations could participate in a vicious cycle limiting the recovery. Animal models mimicking various physiological alterations related to anorexia nervosa are necessary to provide better strategies of treatment.AimTo explore physiological alterations and recovery in a long-term mouse model mimicking numerous consequences of severe anorexia nervosa.MethodsC57Bl/6 female mice were submitted to a separation-based anorexia protocol combining separation and time-restricted feeding for 10 weeks. Thereafter, mice were housed in standard conditions for 10 weeks. Body weight, food intake, body composition, plasma levels of leptin, adiponectin, IGF-1, blood levels of GH, reproductive function and glucose tolerance were followed. Gene expression of several markers of lipid and energy metabolism was assayed in adipose tissues.ResultsMimicking what is observed in anorexia nervosa patients, and despite a food intake close to that of control mice, separation-based anorexia mice displayed marked alterations in body weight, fat mass, lean mass, bone mass acquisition, reproductive function, GH/IGF-1 axis, and leptinemia. mRNA levels of markers of lipogenesis, lipolysis, and the brown-like adipocyte lineage in subcutaneous adipose tissue were also changed. All these alterations were corrected during the recovery phase, except for the hypoleptinemia that persisted despite the full recovery of fat mass.ConclusionThis study strongly supports the separation-based anorexia protocol as a valuable model of long-term negative energy balance state that closely mimics various symptoms observed in anorexia nervosa, including metabolic adaptations. Interestingly, during a recovery phase, mice showed a high capacity to normalize these parameters with the exception of plasma leptin levels. It will be interesting therefore to explore further the central and peripheral effects of the uncorrected hypoleptinemia during recovery from separation-based anorexia.
Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated.
Although the short-term effects of fasting or energy deficit on hypothalamic neuropeptide circuitries are now better understood, the effects of long-term energy deficit and refeeding remain to be elucidated. We showed that after a long-term energy deficit,mice exhibited persistent hypoleptinemia following the refeeding period despite restoration of fat mass, ovarian activity, and feeding behavior. We aimed to examine the hypothalamic adaptations after 10 weeks of energy deficit and after 10 further weeks of nutritional recovery. To do so, we assessed the mRNA levels of the leptin receptor and the main orexigenic and anorexigenic peptides, and their receptors regulated by leptin. Markers of hypothalamic inflammation were assessed as leptin can also participate in this phenomenon.Long-term time-restricted feeding and separation induced significant increase in mRNA levels of hypothalamic orexigenic peptides, while both Y1 and Y5 receptor mRNAs were downregulated. No changes occurred in the mRNA levels of orexin (OX), melanin-concentrating hormone, pro-opiomelanocortin, 26RFa (26-amino acid RF-amide peptide), and their receptors despite an increase in the expression of melanocortin receptors (MC3-R and MC4-R) and OXR1 (OX receptor 1). The refeeding period induced an overexpression of leptin receptor mRNA in the hypothalamus. The other assessed mRNA levels were normalized except for Y2, Y5, MC3-R, and MC4-R, which remained upregulated. No convincing changes were observed in neuroinflammatory markers, even if interleukin-1β mRNA levels were increased in parallel with those of Iba1 (ionized calcium-binding adaptor molecule 1), a marker of microglial activation. Normalization of leptin-regulated functions and hypothalamic gene expressions in refed mice with low plasma leptin levels could be sustained by recalibration of hypothalamic sensitivity to leptin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.