Purpose: Motivated by the goal of developing new methods to detect early signs of sarcopenia, we investigated if surface electromyographic (SEMG) data recorded during the performance of cyclic, submaximal back extensions are marked by age-specific differences in their time and frequency characteristics. Furthermore, day-today retest reliability of the EMG measures was examined. Methods: A total of 86 healthy volunteers used a back dynamometer to perform a series of three maximal voluntary contractions (MVC) consisting of isometric back extensions, followed by an isometric back extension at 80% MVC, and finally 25 slow cyclic back extensions at 50% MVC. SEMG data was recorded bilaterally at L1, L2, and L5 from the iliocostalis lumborum, longissimus, and multifidus muscles, respectively. Tests were repeated two days and six weeks later. A linear mixed-effects model with fixed effects "age, sex, test number" and the random effect "person" was performed to investigate age-specific differences in both the initial value and the time-course (as defined by the slope of the regression line) of the root mean square (RMS-SEMG) values and instantaneous median frequency (IMDF-SEMG) values calculated separately for the shortening and lengthening phases of the exercise cycles. Generalizability Theory was used to examine reliability of the EMG measures. Results: Back extensor strength was comparable in younger and older adults. The initial value of RMS-SEMG and IMDF-SEMG as well as the RMS-SEMG time-course did not significantly differ between the two age groups. Conversely, the IMDF-SEMG time-course showed more rapid changes in younger than in older individuals. Absolute and relative reliability of the SEMG time-frequency representations were comparable in older and younger individuals with good to excellent relative reliability but variable absolute reliability levels.
The impact of aging on the back muscles is not well understood, yet may hold clues to both normal aging and chronic low back pain (cLBP). This study sought to investigate whether the median frequency (MF) surface electromyographic (SEMG) back muscle fatigue method-a proxy for glycolytic muscle metabolismwould be able to detect age-and sex-specific differences in neuromuscular and muscle metabolic functions in individuals with cLBP in a reliable way, and whether it would be as sensitive as when used on healthy individuals. With participants seated on a dynamometer (20°t runk anteflexion), paraspinal SEMG activity was recorded bilaterally from the multifidus (L5), longissimus (L2), and iliolumbalis (L1) muscles during isometric, sustained back extensions loaded at 80% of maximum from 117 younger (58 females) and 112 older (56 female) cLBP individuals. Tests were repeated after 1-2 days and 6 weeks. Median frequency, the SEMG variable indicating neuromuscular fatigue, was analyzed. Maximum back extensor strength was comparable between younger and older participants. Significantly less MF-SEMG back muscle fatigue was observed in older as compared to younger, and in older female as compared to older male cLBP individuals. Relative reliability was excellent, but absolute reliability appeared large for this SEMG-fatigue measure. Findings suggest that cLBP likely does not mask the age-specific diagnostic potential of the MF-SEMG back extensor fatigue method. Thus, this method possesses a great potential to be further developed into a valuable biomarker capable of detecting back muscle function at risk of sarcopenia at very early stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.