Background: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts in the kidney and end stage renal disease by the fourth or fifth decade of life. Mutations in the PKD1 gene account for 85% of all cases of ADPKD. No curative therapy exists for patients affected by this disease and an underexplored avenue for the treatment of ADPKD is the targeting of epigenetic changes that occur during cystogenesis. Limited data exists on alterations in DNA methylation that are associated with ADPKD. Given the similarities between cyst growth and neoplasia, and the fact that 2 DNA methylation inhibitors are already Food and Drug Administration-approved for the treatment of myelodysplastic syndrome, we hypothesized that global DNA methylation patterns in ADPKD would parallel that observed in neoplasia, and which may provide an opportunity to treat ADPKD with epigenetic inhibitors. To address this hypothesis, we undertook a global DNA methylation analysis of human ADPKD kidney. Methods: We generated single nucleotide resolution methylomes of cortical kidney tissue from individuals with ADPKD, and from non-ADPKD kidney tissue, using reduced representation bisulfite sequencing. Using quantitative reverse transcription polymerase chain reaction, we investigated expression of the PKD1 gene in both ADPKD and non-ADPKD kidney. Results: We have shown that ADPKD-derived genomic DNA exhibits global hypomethylation when compared with non-ADPKD kidney, a pattern commonly observed in DNA methylation studies of tumor-derived tissue. We have also identified 13 discrete regions that are significantly differentially methylated in ADPKD compared to non-ADPKD, and 8 of these are gene specific. The PKD1 gene shows an increase in methylation at the 3′ end of the gene body, but in contrast to previously published data, this is not associated with a decrease in PKD1 mRNA expression. Conclusion: This genome-scale single nucleotide resolution analysis of DNA methylation in human polycystic kidneys suggests that DNA methylation differences at specific loci are associated with ADPKD. Further exploration into the significance of these preliminary results may shed light on the disease process, and potentially reveal new therapeutic possibilities.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.
Autosomal dominant polycystic kidney disease (ADPKD) is a heritable disease characterized by bilateral renal enlargement due to the growth of cysts throughout the kidneys. Inheritance of a disease-causing mutation is required to develop ADPKD, which results in end-stage kidney disease and is associated with a high morbidity.The pathology underlying cyst formation is not well understood. To address this, we have previously shown the global methylome is altered in ADPKD tissue, suggesting a role of DNA methylation in disease-state renal tissue. As cysts are believed to arise independently, we hypothesize that DNA methylation changes vary accordingly. Here we further investigate the role of DNA methylation within independent cysts to characterize key intra-individual changes. We demonstrate that fragments within CpG islands and gene bodies harbor the greatest amount of variation across the ADPKD kidney, while intergenic fragments are comparatively stable. A proportion of variably methylated genes were also differentially methylated in ADPKD tissue. Our data provide evidence that individual molecular mechanisms are operating in the development of each cyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.