Acute myeloid leukemia (AML) is a deadly hematologic malignancy with poor prognosis, particularly in the elderly. Even among individuals with favorable-risk disease, approximately half will relapse with conventional therapy. In this clinical circumstance, the determinants of relapse are unclear, and there are no therapeutic interventions that can prevent recurrent disease. Mutations in the transcription factor CEBPA are associated with favorable risk in AML. However, mutations in the growth factor receptor CSF3R are commonly co-occurrent in CEBPA mutant AML and are associated with an increased risk of relapse. To develop therapeutic strategies for this disease subset, we performed medium-throughput drug screening on CEBPA/CSF3R mutant leukemia cells and identified sensitivity to inhibitors of lysine-specific demethylase 1 (LSD1). Treatment of CSF3R/CEBPA mutant leukemia cells with LSD1 inhibitors reactivates differentiation-associated enhancers driving immunophenotypic and morphologic differentiation. LSD1 inhibition is ineffective as monotherapy but demonstrates synergy with inhibitors of JAK/STAT signaling, doubling median survival in vivo. These results demonstrate that combined inhibition of JAK/STAT signaling and LSD1 is a promising therapeutic strategy for CEBPA/CSF3R mutant AML.
Background:The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA’s respiratory tract toxicity.Objectives:We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models.Methods:Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr).Results:In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice.Conclusion:CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844
Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. This finding of mutation-synergy is broadly applicable other mutations that activate the JAK/STAT pathway or disrupt CEBPA function (i.e. activating mutations in JAK3 and Core Binding Factor translocations). The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation, confirming predictions from clinical sequencing data. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity. B.J.D.
Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of a subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.