Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice–rice (RR), maize–maize (MM), maize–rice (MR)] and to rice straw application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and R = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111–0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
Three gammaproteobacterial methanotrophic strains (73a, 175 and 114) were isolated from stems of rice plants. All strains are Gram-negative, motile and grow on methane or methanol as sole carbon sources. They oxidize methane using the particulate methane monooxygenase. Strains 114 and 175 possess additionally a soluble methane monooxygenase. All strains contain significant amounts of the cellular fatty acids C16 : 0, C16 : 1ω6c and C16 : 1ω7c, typical for type Ib methanotrophs. Characteristic for strains 114 and 175 are high amounts of C14 : 0 and C16 : 1ω6c , while strain 73a contains high quantities of C16 : 1ω5c. 16S rRNA gene sequence analyses showed that strains 114 and 175 are most closely related to Methylomagnum ishizawai (≥99.6 % sequence identity). Strain 73a is representing a new genus within the family Methylococcaceae, most closely related to Methylococcus capsulatus (94.3 % sequence identity). Phylogenetic analysis of the PmoA sequence indicates that strain 73a represents rice paddy cluster I (RPCI), which has almost exclusively been detected in rice ecosystems. The G+C content of strain 73a is 61.0 mol%, while strains 114 and 175 have a G+C content of 63.3 mol%. Strain 73a (=LMG 29185, =VKM B-2986) represents the type strain of a novel species and genus, for which the name Methyloterricola oryzae gen. nov., sp. nov. is proposed and a description is provided. Strains 175 (=LMG 28717, VKM B-2989) and 114 are members of the species Methylomagnum ishizawai. This genus was so far only represented by one isolate, so an amended description of the species is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.