A severe outbreak of highly virulent and multi-resistant dermatophytosis by species in the Trichophyton mentagrophytes/T. interdigitale complex is ongoing in India. The correct identity of the etiologic agent is a much-debated issue. In order to define species limits, a taxonomic study was undertaken combining molecular, morphological, and physiological characteristics as evidence of classification. Molecular characteristics show that T. mentagrophytes s. str. and T. interdigitale s. str. can be distinguished with difficulty from each other, but are unambiguously different from the Indian genotype, T. indotineae by sequences of the HMG gene. The entities were confirmed by multilocus analysis using tanglegrams. Phenotypic characters of morphology and physiology are not diagnostic, but statistically significant differences are observed between the molecular siblings. These properties may be drivers of separate evolutionary trends. Trichophyton mentagrophytes represents the ancestral, homothallic cloud of genotypes with a probable geophilic lifestyle, while T. indotineae and T. interdigitale behave as anthropophilic, clonal offshoots. The origin of T. indotineae, which currently causes a significant public health problem, is zoonotic, and its emergence is likely due to widespread misuse of antifungals.
Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the presence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackinnonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and translation elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseudochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N. mackinnonii is reclassified as B. mackinnonii comb. Nov. Mycetoma agents in Pleosporales were phylogenetically quite diverse despite their morphological similarity in the formation of pycnidia, except for the ascosporulating genus Falciformispora (formerly in Leptosphaeria). Most of the species diagnosed from human mycetoma were found to be related to waterborne or marine fungi, suggesting an association of the virulence factors with oligotrophism or halotolerance.
On 28th May 2016, mycetoma was recognized as a neglected tropical disease by the World Health Organization. This was the result of a 4-year journey starting in February 2013 with a meeting of global mycetoma experts. Knowledge gaps were identified and included the incidence, prevalence, and mapping of mycetoma; the mode of transmission; the development of methods for early diagnosis; and better treatment. In this review, we review the road to recognition, the ISHAM working group meeting in Argentina, and we address the progress made in closing the knowledge gaps since 2013. Progress included adding another 9000 patients to the literature, which allowed us to update the prevalence map on mycetoma. Furthermore, based on molecular phylogeny, species names were corrected and four novel mycetoma causative agents were identified. By mapping mycetoma causative agents an association with Acacia trees was found. For early diagnosis, three different isothermal amplification techniques were developed, and novel antigens were discovered. To develop better treatment strategies for mycetoma patients, in vitro susceptibility tests for the coelomycete agents of black grain mycetoma were developed, and the first randomized clinical trial for eumycetoma started early 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.