The need for assertive video classification has been increasingly in demand. Especially for detecting endangering situations, it is crucial to have a quick response to avoid triggering more serious problems. During this work, we target video classification concerning falls. Our study focuses on the use of high-level descriptors able to correctly characterize the event. These descriptor results will serve as inputs to
a multi-stream architecture of VGG-16 networks. Therefore, our proposal
is based on the analysis of the best combination of high-level extracted features for the binary classification of videos. This approach was tested on three known datasets, and has proven to yield similar results as other more consuming methods found in the literature.
Supervoxel segmentation leads to major improvements in video analysis since it generates simpler but meaningful primitives (i.e., supervoxels). Thanks to the flexibility of the Iterative Spanning Forest (ISF) framework and recent strategies introduced by the Dynamic Iterative Spanning Forest (DISF) for superpixel computation, we propose a new graph-based method for supervoxel generation by using iterative spanning forest framework, so-called ISF2SVX, based on a pipeline composed by four stages: (a) graph creation; (b) seed oversampling; (c) IFT-based superpixel delineation; and (d) seed set reduction. Moreover, experimental results show that ISF2SVX is capable of effectively describing the video's color variation through its supervoxels, while being competitive for the remaining metrics considered.
ResumoO objetivo desta tese é provar o Teorema de RiemannŰRoch para uma curva projetiva suave e dar diferentes formas de generalizar o conceito de um semigrupo de Weierstrass 𝐻 𝑃 de um ponto P em X. Começamos por deĄnir o semigrupo de Weierstrass 𝐻(𝐷) de um divisor 𝐷 e obtemos que o maior número do conjunto de lacunas é inferior a 2g. Depois, deĄnimos o semigrupo de Weierstrass 𝐻(𝐸, 𝑃 ) de um divisor 𝐸 em relação ao ponto 𝑃 e obtemos que a cardinalidade do conjunto de lacunas é 𝑙(𝐾 𝑋 ⊗ 𝐸). Em seguida, deĄnimos o semigrupo de Weierstrass 𝐻(𝐸, 𝐷) de um divisor 𝐸 com respeito a 𝐷 e obtemos que o número máximo do conjunto de lacunas é inferior a 2𝑔 ⊗ deg(𝐸)/deg(𝐷). Finalmente, deĄnimos o conjunto de Weierstrass 𝑆(ℱ, 𝑃 ) de um Ąbrado vetorial ℱ com respeito a 𝑃 e provamos que é um 𝐻 𝑃 -ideal relativo. Além disso, se ℱ for semiestável, então provamos que o número máximo do conjunto de lacunas é inferior a 2𝑔 ⊗ deg(ℱ)/rk(ℱ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.