Aim/Purpose: One of the main objectives of higher education institutions is to provide a high-quality education to their students and reduce dropout rates. This can be achieved by predicting students’ academic achievement early using Educational Data Mining (EDM). This study aims to predict students’ final grades and identify honorary students at an early stage. Background: EDM research has emerged as an exciting research area, which can unfold valuable knowledge from educational databases for many purposes, such as identifying the dropouts and students who need special attention and discovering honorary students for allocating scholarships. Methodology: In this work, we have collected 300 undergraduate students’ records from three departments of a Computer and Information Science College at a university located in Saudi Arabia. We compared the performance of six data mining methods in predicting academic achievement. Those methods are C4.5, Simple CART, LADTree, Naïve Bayes, Bayes Net with ADTree, and Random Forest. Contribution: We tested the significance of correlation attribute predictors using four different methods. We found 9 out of 18 proposed features with a significant correlation for predicting students’ academic achievement after their 4th semester. Those features are student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses, i.e., database fundamentals, programming language (1), and computer network fundamentals. Findings: The empirical results show the following: (i) the main features that can predict students’ academic achievement are the student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses; (ii) Naïve Bayes classifier performed better than Tree-based Models in predicting students’ academic achievement in general, however, Random Forest outperformed Naïve Bayes in predicting honorary students; (iii) English language skills do not play an essential role in students’ success at the college of Computer and Information Sciences; and (iv) studying an orientation year does not contribute to students’ success. Recommendations for Practitioners: We would recommend instructors to consider using EDM in predicting students’ academic achievement and benefit from that in customizing students’ learning experience based on their different needs. Recommendation for Researchers: We would highly endorse that researchers apply more EDM studies across various universities and compare between them. For example, future research could investigate the effects of offering tutoring sessions for students who fail core courses in their first semesters, examine the role of language skills in social science programs, and examine the role of the orientation year in other programs. Impact on Society: The prediction of academic performance can help both teachers and students in many ways. It also enables the early discovery of honorary students. Thus, well-deserved opportunities can be offered; for example, scholarships, internships, and workshops. It can also help identify students who require special attention to take an appropriate intervention at the earliest stage possible. Moreover, instructors can be aware of each student’s capability and customize the teaching tasks based on students’ needs. Future Research: For future work, the experiment can be repeated with a larger dataset. It could also be extended with more distinctive attributes to reach more accurate results that are useful for improving the students’ learning outcomes. Moreover, experiments could be done using other data mining algorithms to get a broader approach and more valuable and accurate outputs.
The tremendous growth of educational institutions’ electronic data provides the opportunity to extract information that can be used to predict students’ overall success, predict students’ dropout rate, evaluate the performance of teachers and instructors, improve the learning material according to students’ needs, and much more. This paper aims to review the latest trends in predicting students’ performance in higher education. We provide a comprehensive background for understanding Educational Data Mining (EDM). We also explain the measures of determining academic success and highlight the strengths and weaknesses of the most common data mining (DM) tools and methods used nowadays. Moreover, we provide a rich literature review of the EDM work that has been published during the past 12 years (2007–2018) with focus on the prediction of academic performance in higher education. We analyze the most commonly used features and methods in predicting academic achievement, and highlight the benefits of the mostly used DM tools in EDM. The results of this paper could assist researchers and educational planners who are attempting to carry out EDM solutions in the domain of higher education as we highlight the type of features that the previous researches found to have significant impact on the prediction, as well as the benefits and drawbacks of the DM methods and tools used for predicting academic outcomes.
The tremendous growth in electronic educational data creates the need to have meaningful information extracted from it. Educational Data Mining (EDM) is an exciting research area that can reveal valuable knowledge from educational databases. This knowledge can be used for many purposes, including identifying dropouts or weak students who need special attention and discovering extraordinary students who can be offered lifetime opportunities. Although former studies in EDM used an extensive range of features for predicting students’ academic achievement (in terms of (i) achieved grades or (ii) passing and failing), those features are sometimes not obtainable for practical usage, and therefore, the prediction models are not feasible for employment. This study uses data mining (DM) algorithms to predict the academic performance of master’ s students by using a non-extensive data set and including only the features that are easy to collect at the beginning of a studying program. To perform this study, we have collected over 700 students' records from 2010 to 2018 from the Faculty of Business Informatics and Mathematics at the University of Mannheim in Germany. Those records include demographics and post-enrollment features such as semester grades. The empirical results show the following: (i) the most significant features for predicting students' academic achievements are the students’ grades in each semester (importance rate between 14 and 36%), followed by the distance from students’ accommodation to university (importance rate between 6 and 18%) and culture (importance rate between 7 and 17%). On the other hand, gender, age, the numbers of failed courses, and the number of registered and unregistered exams per semester are less significant for the predictions. (ii) As expected, predictions performed after the second semester is more accurate than those performed after the first semester. (iii) Unsurprisingly, models that predict two classes yield better results than those that predict three. (iv) Random Forest classifier performs the best in all prediction models (0.77–0.94 accuracy), and using oversampling methods to deal with imbalanced data can significantly improve the performance of DM methods. For future work, we recommend testing the predictive models on other master programs and a larger datasets. Furthermore, we recommend investigating other oversampling approaches.
PurposeThe purpose of this study is to determine whether students' self-assessment (SSA) could be used as a significant attribute to predict students' future academic achievement.Design/methodology/approachThe authors address how well students can assess their abilities and study the relationship between this ability and demographic properties and previous study performance. The authors present the study results by measuring the relationship between the SSA across five different topics and comparing them with the students' performance in these topics using short tests. The test has been voluntarily taken by more than 300 students planning to enroll in the School of Business Informatics and Mathematics master's programs at the University of Mannheim.FindingsThe study results reveal which attributes are mostly associated with the accuracy level of SSA in higher education. The authors conclude that SSA, it can be valuable in predicting master's students' academic achievement when taking specific measures when designing the predictive module.Research limitations/implicationsDue to time constraints, the study was restricted only to students applying to master's programs at the Faculty of Business Informatics and Mathematics at the University of Mannheim. This resulted in collecting a limited data set. Also, the scope of this study was restricted to testing the accuracy of SSA and did not test using it as an attribute for predicting students' academic achievement.Originality/valuePredicting students' academic performance in higher education is beneficial from different perspectives. The literature reveals that a considerable amount of work is published to analyze and predict academic performance in higher education. However, most of the published work relies on attributes such as demographics, teachers' assessment, and examination scores for performing their prediction while neglecting the use of other forms of evaluation such as SSA or self-evaluation.
Although various researches have been published regarding e-learning worldwide, there are not enough studies performed in the Balkan countries. This study aims to explore the students' perception of e-learning during pandemics and build a model for predicting students' satisfaction in North Macedonia. We collected data through a questionnaire and received 290 responses. The results reveal that most students are satisfied with e-learning. However, faceto- face classes are still preferred. Moreover, the proposed model successfully predicts students' satisfaction with 88.4% accuracy where technology is the most essential factor for the prediction, followed by building relationships, then students' interaction, then finally students' engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.