In this work we analyze the multi-elliptic rogue wave clusters as new solutions of the nonlinear Schrödinger equation (NLSE). Such structures are obtained on uniform backgrounds by using the Darboux transformation scheme of order n with the first m evolution shifts that are equal, nonzero, and eigenvaluedependent, while the imaginary parts of all eigenvalues tend to one. We show that an Akhmediev breather of n 2m order appears at the origin of the (x, t) plane and can be considered as the central rogue wave of the cluster. We show that the high-intensity narrow peak,
In this work, we investigate rogue wave (RW) clusters of different shapes, composed of Kuznetsov–Ma solitons (KMSs) from the nonlinear Schrödinger equation (NLSE) with Kerr nonlinearity. We present three classes of exact higher-order solutions on uniform background that are calculated using the Darboux transformation (DT) scheme with precisely chosen parameters. The first solution class is characterized by strong intensity narrow peaks that are periodic along the evolution x-axis, when the eigenvalues in DT scheme generate KMSs with commensurate frequencies. The second solution class exhibits a form of elliptical rogue wave clusters; it is derived from the first solution class when the first m evolution shifts in the nth-order DT scheme are nonzero and equal. We show that the high-intensity peaks built on KMSs of order $$n-2m$$ n - 2 m periodically appear along the x-axis. This structure, considered as the central rogue wave, is enclosed by m ellipses consisting of a certain number of the first-order KMSs determined by the ellipse index and the solution order. The third class of KMS clusters is obtained when purely imaginary DT eigenvalues tend to some preset offset value higher than one, while keeping the x-shifts unchanged. We show that the central rogue wave at (0, 0) always retains its $$n-2m$$ n - 2 m order. The n tails composed of the first-order KMSs are formed above and below the central maximum. When n is even, more complicated patterns are generated, with m and $$m-1$$ m - 1 loops above and below the central RW, respectively. Finally, we compute an additional solution class on a wavy background, defined by the Jacobi elliptic dnoidal function, which displays specific intensity patterns that are consistent with the background wavy perturbation. This work demonstrates an incredible power of the DT scheme in creating new solutions of the NLSE and a tremendous richness in form and function of those solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.