Context. N2 is rarely found in comets, or when it is present, it is found only in small quantities despite its abundance on the surfaces of different outer Solar System objects. A few comets presented N2+ emission lines in their optical spectra. One of them, C/2016 R2, showed an unusually high abundance of this species in 2018, with dozens of bright N2+ emission lines. A robust model of the N2+ fluorescence in comets would permit us to perform a detailed quantitative analysis of this species and enlarge our comprehension of the surprisingly wide range of N2 abundances in comets. Aims. The goal of this work is to provide the necessary tools to interpret N2+ spectra. Computing production rates for a cometary species necessitates a good knowledge of the number of molecules located along the line of sight of the spectrometer. This in turn requires a good modeling of the emission spectrum with detailed fluorescence efficiencies for the different bands. Methods. We developed a model based on available laboratory data and new theoretical results relative to the N2+ to compute the emission spectrum of this species observed in 8.2m Very Large Telescope high-resolution spectra of comet C/2016 R2. Because of some significant differences between spectra obtained on the nucleus and at a cometocentric distance of about 6000 km, it became apparent that a classic fluorescence equilibrium spectrum could not be used. A synthetic spectrum based on a Monte Carlo method and producing spectra at different times from an initial relative population was developed and compared to our observational data. Results. Our modeling of the cometary N2+ emission spectrum satisfactorily fits our observed spectra of comet C/2016 R2, leading to the first modeling at high resolution. Different fluorescence efficiency factors are computed.
Since 2005 December, recurrent outbursts have been observed for Centaur 174/P Echeclus, confirming it is an active object. Thanks to a large number of photometric data obtained between 2001 April and 2019 December we were able to compute a shape model of this object. We obtain a sidereal rotation period P = 26.785178 ± 10−6 h and six equally probable pole solutions, each with a large obliquity of the rotational axis (50○ or more). We also find the object significantly elongated, with a semi-major axial ratio a/b = 1.32 (and b/c ∼ 1.1 but this second ratio is poorly constrained by the photometric data). Additionally, we present a detailed analysis of the dust emission from the 2016 outburst. Different colour maps are presented that reveal a change in dust colour, which becomes bluer with increasing cometocentric distance. A blue ring-like structure around the nucleus clearly visible in the images obtained on October 4 in the V-R spectral interval points out that the innermost near nucleus region is considerably redder than the surrounding coma. Different jets are also apparent, the main one being oriented southward. A detailed dynamical study is done to investigate past and future orbital elements. These elements appear stable in the period ≈1200 CE to ≈2900 CE. For a period of 12,000 years the main conclusion is that Echeclus’ perihelion distance was greater than about 4 au, preventing it from following a typical cometary activity like a short-period comet. Close encounters with giant planets nevertheless prevent any study of orbital elements on longer timescale.
The building blocks of Titan and Enceladus are believed to have formed in a late-stage circumplanetary disk (CPD) around Saturn. Evaluating the evolution of the abundances of volatile species in this disk as a function of the migration, growth, and evaporation of icy grains is then of primary importance to assess the origin of the material that eventually formed these two moons. Here we use a simple prescription of Saturn’s CPD in which the location of the centrifugal radius is varied, to investigate the time evolution of the icelines of water ice, ammonia hydrate, methane clathrate, carbon monoxide, and dinitrogen pure condensates. To match their compositional data, the building blocks of both moons would have had to form in a region of the CPD situated between the icelines of carbon monoxide and dinitrogen at their outer limit, and the iceline of methane clathrate as their inner limit. We find that a source of dust at the location of centrifugal radius does not guarantee the replenishment of the disk in the volatiles assumed to be primordial in Titan and Enceladus. Only simulations assuming a centrifugal radius in the range 66–100 Saturnian radii allow for the formation and growth of solids with compositions consistent with those measured in Enceladus and Titan. The species are then able to evolve in solid forms in the system for longer periods of time, even reaching an equilibrium, thus favoring the formation of Titan and Enceladus’s building blocks in this region of the disk.
<p>Comet C/2016 R2 PanSTARRS presents an unusually high N<sub>2</sub>/CO abundance ratio, as well as a heavy depletion in H<sub>2</sub>O, making it the only known comet to have this composition. Two studies have independently estimated the possible origin of this comet from building blocks formed in a peculiar region in the protoplanetary disk, near the ice line of CO and N<sub>2</sub>. Here we explore the potential fates of comets formed from these building blocks using a numerical simulation of early solar system formation and tracking the dynamics of these objects in the Jumping Neptune scenario. We find that objects formed in the region of the CO- and N<sub>2</sub>- icelines a are highly likely to be sent towards the Oort Cloud or ejected from the Solar System altogether on a relatively short timescale, thus offering a potential explanation for the scarcity of comets with R2&#8217;s unique composition.&#160;&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.