In this investigation, we have developed a graphical user interface application to perform the diagnostic of pathology on the column vertebral based on the Cluster K-Nearest Neighbor (CKNN) classifier. The system is implemented and simulated in Anaconda, and its performance is tested on real dataset that contains 6 features and two (02) classes. Each class, abnormal and normal class consists of 210 instances, and 100 instances, respectively. A comparison of the performance of the test measurement under various test sizes (10%~50%) is carried out to predict the class label when the nearest neighbor k changes from 1 to 19. The results show that the accuracy depends on both independent parameters, the test size and k-neighbors, which gives better training accuracy than the test accuracy, in the range of [82.5% ~ 100%] and [70%~84%], respectively. When k varies from 1 to 4, a higher training accuracy, larger than 90% is observed. While the test set shows a low accuracy in the range of [74% ~ 82.5%]. Increasing the test size or/and k, does not affect significantly the accuracy. When k is larger 1, the training accuracy is approximately equal to 0.925±0.05, the test accuracy (except for k=6 and 17) is about 0.79±0.05. The prediction of the class status maybe optimized by combining the dataset set size with the k-neighbors parameters. The GUI can be useful to help the medical doctors to diagnostic the patient effectively to take a rapid decision and predict results in a reduced time lapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.