In this paper we initiate a quantitative study of the decentralization of the governance structures of Bitcoin and Ethereum. In particular, we scraped the open-source repositories associated with their respective codebases and improvement proposals to find the number of people contributing to the code itself and to the overall discussion. We then present different metrics to quantify decentralization, both in each of the cryptocurrencies and, for comparison, in two popular open-source programming languages: Clojure and Rust. We find that for both cryptocurrencies and programming languages, there is usually a handful of people that accounts for most of the discussion. We also look into the effect of forks in Bitcoin and Ethereum, and find that there is little intersection between the communities of the original currencies and those of the forks.
Bitcoin is a decentralized cryptocurrency that uses a ledger (or "blockchain") to keep track of the transactions made between its users. Because it is a fully decentralized system and anyone can join, every transaction is by necessity public. Thus, to preserve some semblance of privacy, users in the system are represented not by their real-world identities but by pseudonyms. While pseudonyms are acceptable for a standalone cryptocurrency, the emergence of other potential blockchainbased applications -e.g., using them to administer benefits and pensions -poses a need to associate certain attributes with the users of the system. In this paper, we address the question of how to register identities and attributes in a system built on globally visible ledgers. We propose a variety of possible solutions and in each case, we analyze the tradeoff our solution provides between privacy (ensuring that no one can associate the user's real-world identity with the pseudonym or other attributes they use on the ledger), usability (ensuring that verification of their attributes poses the lowest possible burden to users), and integrity (ensuring that no one can impersonate a user). We also present an implementation of one of our solution using Ethereum.
Real world protocols often involve human choices that depend on incentives, including when they fail and require fail-safe or fail-deadly mechanisms. We look at three example systems (the EMV protocol, consensus in cryptocurrencies, and Tor) in this context, paying particular attention to the role that incentives play in fail-safe and faildeadly situations. We argue that incentives should explicitly be taken into account in the design of security protocols, and discuss general challenges in doing so.
Cryptocurrencies have garnered much attention in recent years, both from the academic community and industry. One interesting aspect of cryptocurrencies is their explicit consideration of incentives at the protocol level. Understanding how to incorporate this into the models used to design cryptocurrencies has motivated a large body of work, yet many open problems still exist and current systems rarely deal with incentive related problems well. This issue arises due to the gap between Cryptography and Distributed Systems security, which deals with traditional security problems that ignore the explicit consideration of incentives, and Game Theory, which deals best with situations involving incentives. With this work, we aim to offer a systematization of the work that relates to this problem, considering papers that blend Game Theory with Cryptography or Distributed systems and discussing how they can be related. This gives an overview of the available tools, and we look at their (potential) use in practice, in the context of existing blockchain based systems that have been proposed or implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.