Background Changes in Doppler flow patterns of hepatic veins (HV), portal vein (PV) and intra-renal veins (RV) reflect right atrial pressure and venous congestion; the feasibility of obtaining these assessments and the clinical relevance of the findings is unknown in a general ICU population. This study compares the morphology of HV, PV and RV waveform abnormalities in prediction of major adverse kidney events at 30 days (MAKE30) in critically ill patients. Study design and methods We conducted a prospective observational study enrolling adult patients within 24 h of admission to the ICU. Patients underwent an ultrasound evaluation of the HV, PV and RV. We compared the rate of MAKE-30 events in patients with and without venous flow abnormalities in the hepatic, portal and intra-renal veins. The HV was considered abnormal if S to D wave reversal was present. The PV was considered abnormal if the portal pulsatility index (PPI) was greater than 30%. We also examined PPI as a continuous variable to assess whether small changes in portal vein flow was a clinically important marker of venous congestion. Results From January 2019 to June 2019, we enrolled 114 patients. HV abnormalities demonstrate an odds ratio of 4.0 (95% CI 1.4–11.2). PV as a dichotomous outcome is associated with an increased odds ratio of MAKE-30 but fails to reach statistical significance (OR 2.3 95% CI 0.87–5.96), but when examined as a continuous variable it demonstrates an odds ratio of 1.03 (95% CI 1.00–1.06). RV Doppler flow abnormalities are not associated with an increase in the rate of MAKE-30 Interpretation Obtaining hepatic, portal and renal venous Doppler assessments in critically ill ICU patients are feasible. Abnormalities in hepatic and portal venous Doppler are associated with an increase in MAKE-30. Further research is needed to determine if venous Doppler assessments can be useful measures in assessing right-sided venous congestion in critically ill patients.
IVC diameter and IVC respiratory variation was able to be obtained in the majority of cases, giving an estimate of fluid status. Estimation of ejection fraction was useful in guiding the treatment plan regarding the requirement of fluid boluses versus ionotropic support. We conclude that the FREE can provide meaningful data in difficult to image critically ill trauma patients.
(MSCs) have not been evaluated in a preclinical model of pressure overload, which simulates the pathophysiology relevant to many forms of CHD. A neonatal swine model of RV pressure overload was utilized to test the hypothesis that MSCs preserve RV function and attenuate ventricular remodeling. Immunosuppressed Yorkshire swine underwent pulmonary artery banding to induce RV dysfunction. After 30 min, human MSCs (1 million cells, n ϭ 5) or placebo (n ϭ 5) were injected intramyocardially into the RV free wall. Serial transthoracic echocardiography monitored RV functional indices including 2D myocardial strain analysis. Four weeks postinjection, the MSC-treated myocardium had a smaller increase in RV end-diastolic area, end-systolic area, and tricuspid vena contracta width (P Ͻ 0.01), increased RV fractional area of change, and improved myocardial strain mechanics relative to placebo (P Ͻ 0.01). The MSC-treated myocardium demonstrated enhanced neovessel formation (P Ͻ 0.0001), superior recruitment of endogenous c-kitϩ cardiac stem cells to the RV (P Ͻ 0.0001) and increased proliferation of cardiomyocytes (P ϭ 0.0009) and endothelial cells (P Ͻ 0.0001). Hypertrophic changes in the RV were more pronounced in the placebo group, as evidenced by greater wall thickness by echocardiography (P ϭ 0.008), increased cardiomyocyte cross-sectional area (P ϭ 0.001), and increased expression of hypertrophy-related genes, including brain natriuretic peptide, -myosin heavy chain and myosin light chain. Additionally, MSC-treated myocardium demonstrated increased expression of the antihypertrophy secreted factor, growth differentiation factor 15 (GDF15), and its downstream effector, SMAD 2/3, in cultured neonatal rat cardiomyocytes and in the porcine RV myocardium. This is the first report of the use of MSCs as a therapeutic strategy to preserve RV function and attenuate remodeling in the setting of pressure overload. Mechanistically, transplanted MSCs possibly stimulated GDF15 and its downstream SMAD proteins to antagonize the hypertrophy response of pressure overload. These encouraging results have implications in congenital cardiac pressure overload lesions. stem cell therapy; congenital heart disease; right ventricle; pressure overload CONGENITAL HEART DISEASE (CHD) is the leading cause of morbidity and mortality in children with birth defects. While surgical interventions have dramatically improved outcomes and longevity in patients with CHD, many patients still progress to heart failure, a population that has grown significantly over the last decade (30). In contrast to adult patients, in whom ischemic heart disease is the predominant etiology of heart failure, children with CHD are frequently exposed to acute or chronic ventricular pressure and volume overload, which if untreated can progress to ventricular dysfunction and ultimately to heart failure. Further, patients with CHD who develop right ventricular (RV) dysfunction have the poorest outcomes (23, 26), particularly in those patients with univentricular heart disease i...
Immersive virtual reality (VR) consists of immersion in artificial environments through the use of real-time render technologies and the latest generation devices. The users feel just as immersed as they would feel in an everyday life situation, and this sense of presence seems to have therapeutic potentials. However, the VR mechanisms remain only partially known. This study is novel in that, for the first time in VR research, appropriate controls for VR contexts, immersive characteristics (ie, control VR), and multifaceted objective and subjective outcomes were included in a within-subject study design conducted on healthy participants. Participants received heat thermal stimulations to determine how VR can increase individual heat-pain tolerance limits (primary outcome) measured in degrees Celsius and seconds while recording concurrent autonomic responses. We also assessed changes in pain unpleasantness, mood, situational anxiety, and level of enjoyment (secondary outcomes). The VR induced a net gain in heat-pain tolerance limits that was paralleled by an increase of the parasympathetic responses. VR improved mood, situational anxiety, and pain unpleasantness when participants perceived the context as enjoyable, but these changes did not influence the increases in pain tolerance limits. Distraction increased pain tolerance limits but did not induce such mood and physiological changes. Immersive VR has been anecdotally applied to improve acute symptoms in contexts such as battlefield, emergency, and operating rooms. This study provides a mechanistic framework for VR as a low-risk, nonpharmacological intervention, which regulates autonomic, affective (mood and situational anxiety), and evaluative (subjective pain and enjoyment ratings) responses associated with acute pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.