The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude—up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.
Purpose: Measurement of the absorbed dose from radiotherapy beams is an essential component of providing safe and reproducible treatment. For an energy-dependent dosimeter such as thermoluminescent dosimeters (TLDs), it is generally assumed that the energy spectrum is constant throughout the treatment field and is unperturbed by field size, depth, field modulation, or heterogeneities. However, this does not reflect reality and introduces error into clinical dose measurements. The purpose of this study was to evaluate the variability in the energy spectrum of a Varian 6 MV beam and to evaluate the impact of these variations in photon energy spectra on the response of a common energy-dependent dosimeter, TLD. Methods: Using Monte Carlo methods, we calculated variations in the photon energy spectra of a 6 MV beam as a result of variations of treatment parameters, including field size, measurement location, the presence of heterogeneities, and field modulation. The impact of these spectral variations on the response of the TLD is largely based on increased photoelectric effect in the dosimeter, and this impact was calculated using Burlin cavity theory. Measurements of the energy response were also made to determine the additional energy response due to all intrinsic and secondary effects. Results: For most in-field measurements, regardless of treatment parameter, the dosimeter response was not significantly affected by the spectral variations (<1% effect). For measurement points outside of the treatment field, where the spectrum is softer, the TLD over-responded by up to 12% due to an increased probability of photoelectric effect in the TLD material as well as inherent ionization density effects that play a role at low photon energies. Conclusions: It is generally acceptable to ignore the impact of variations in the photon spectrum on the measured dose for locations within the treatment field. However, outside the treatment field, the spectra are much softer, and a correction factor is generally appropriate. The results of this work have determined values for this factor, which range from 0.88 to 0.99 depending on the specific irradiation conditions.
An important but little examined aspect of radiation dosimetry studies involving organs outside the treatment field is how to assess dose to organs that are partially within a treatment field; this question is particularly important for studies intended to measure total absorbed dose in order to predict the risk of radiogenic late effects, such as second cancers. The purpose of this investigation was therefore to establish a method to categorize organs as in-field, out-of-field or partially infield that would be applicable to both conventional and modern radiotherapy techniques. In this study, we defined guidelines to categorize the organs based on isodose inclusion criteria, developed methods to assess doses to partially in-field organs, and then tested the methods by applying them to a case of intensity-modulated radiotherapy for hepatocellular carcinoma based on actual patient data. For partially in-field organs, we recommend performing a sensitivity test to determine whether potential inaccuracies in low-dose regions of the DVH (from the treatment planning system) have a substantial effect on the mean organ dose, i.e. >5%. In such cases, we suggest supplementing calculated DVH data with measured dosimetric data using a volumeweighting technique to determine the mean dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.