The genera Convivina , Fructobacillus , Leuconostoc , Oenococcus and Weissella , which formed the family Leuconostocaceae , have recently been merged within the family Lactobacillaceae . Using genome sequences for 47 of the 52 named species from these genera, we report here comprehensive phylogenomic and comparative analyses on protein sequences from these species using multiple approaches. In a phylogenomic tree based on concatenated sequences of 498 core proteins from these five genera, and in a 16S rRNA gene tree, members of the genera Fructobacillus , Leuconostoc and Oenococcus formed distinct strongly supported clades. In contrast, Weissella species grouped into two distinct unrelated clades designated as the ‘ Weissella main clade’ and ‘ Weissella clade 2’. The presence of these clades is also seen in a matrix of pairwise average amino acid identity based on core protein sequences. In parallel, comparative genomic studies on protein sequences from Leuconostocaceae genomes have identified 46 conserved signature indels (CSIs) in diverse proteins that are unique characteristics of the different observed species clades. Of these identified CSIs, five, five and 13 CSIs are uniquely present in members of the genera Fructobacillus , Leuconostoc and Oenococcus , respectively. We also report here six and five CSIs that are exclusively present in the species from the Weissella main clade and Weissella clade 2, respectively, providing independent evidence supporting their distinctness from each other. The remaining 12 identified CSIs are commonly shared by some or all of the species from the genera Convivina , Fructobacillus and Leuconostoc , clarifying their interrelationships. The identified CSIs provide novel and reliable means for the identification/circumscription of members of the genera Fructobacillus , Leuconostoc and Oenococcus as well as the two Weissella species clades in molecular terms. Based on the strong phylogenetic and molecular evidence presented here, we propose that the genus Weissella be limited to only the species from the Weissell a main clade, whereas the species forming Weissella clade 2 should be transferred to a new genus Periweissella gen. nov.
Evolutionary relationships amongst Chlorobia and Ignavibacteria species/strains were examined using phylogenomic and comparative analyses of genome sequences. In a phylogenomic tree based on 282 conserved proteins, the named Chlorobia species formed a monophyletic clade containing two distinct subclades. One clade, encompassing the genera Chlorobaculum, Chlorobium, Pelodictyon, and Prosthecochloris, corresponds to the family Chlorobiaceae, whereas another clade, harboring Chloroherpeton thalassium, Candidatus Thermochlorobacter aerophilum, Candidatus Thermochlorobacteriaceae bacterium GBChlB, and Chlorobium sp. 445, is now proposed as a new family (Chloroherpetonaceae fam. nov). In parallel, our comparative genomic analyses have identified 47 conserved signature indels (CSIs) in diverse proteins that are exclusively present in members of the class Chlorobia or its two families, providing reliable means for identification. Two known Ignavibacteria species in our phylogenomic tree are found to group within a larger clade containing several Candidatus species and uncultured Chlorobi strains. A CSI in the SecY protein is uniquely shared by the species/strains from this “larger Ignavibacteria clade”. Two additional CSIs, which are commonly shared by Chlorobia species and the “larger Ignavibacteria clade”, support a specific relationship between these two groups. The newly identified molecular markers provide novel tools for genetic and biochemical studies and identification of these organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.