TBX5 is a transcription factor which plays important roles in the development of the heart and upper limbs. Mutations in this gene produce the inherited disorder Holt-Oram syndrome. Here, we report a physical interaction between TBX5 and MEF2C leading to a synergistic activation of the ␣-cardiac myosin heavy chain (MYH6). Mutants of TBX5, TBX5G80R, and TBX5R279X that produce severe cardiac phenotypes impair the synergy. Using fluorescence resonance energy transfer, we demonstrate the interaction of TBX5 and MEF2C in living cells. We also show that they physically associate through their DNA-binding domains to form a complex on the MYH6 promoter. Morpholino-mediated knockdowns of Tbx5 and Mef2c in zebrafish suggest that the genetic interaction of these proteins is not only required for MYH6 expression but also essential for the early stages of heart development and survival. This is the first report of a functional interaction between a T-box protein and a MADS box factor that may be crucial in cardiomyocyte differentiation.
TBX5 plays a critical role in heart and forelimb development. Mutations in TBX5 cause Holt-Oram syndrome, an autosomal dominant condition that affects the formation of the heart and upper-limb. Several studies have provided significant insight into the role of TBX5 in cardiogenesis; however, how TBX5 activity is regulated by other factors is still unknown. Here we report that histone acetyltransferases KAT2A and KAT2B associate with TBX5 and acetylate it at Lys339. Acetylation potentiates its transcriptional activity and is required for nuclear retention. Morpholino-mediated knockdown of kat2a and kat2b transcripts in zebrafish severely perturb heart and limb development, mirroring the tbx5a knockdown phenotype. The phenotypes found in MO-injected embryos were also observed when we introduced mutations in the kat2a or kat2b genes using the CRISPR-Cas system. These studies highlight the importance of KAT2A and KAT2B modulation of TBX5 and their impact on heart and limb development.
SUMMARYMyotonic dystrophy (DM; also known as dystrophia myotonica) is an autosomal dominant disorder that affects the heart, eyes, brain and endocrine system, but the predominant symptoms are neuromuscular, with progressive muscle weakness and wasting. DM presents in two forms, DM1 and DM2, both of which are caused by nucleotide repeat expansions: CTG in the DMPK gene for DM1 and CCTG in ZNF9 (CNBP) for DM2. Previous studies have shown that the mutant mRNAs containing the transcribed CUG or CCUG repeats are retained within the nuclei of cells from individuals with DM, where they bind and sequester the muscleblind-like proteins MBNL1, MBNL2 and MBNL3. It has been proposed that the sequestration of these proteins plays a key role in determining the classic features of DM. However, the functions of each of the three MBNL genes are not completely understood. We have generated a zebrafish knockdown model in which we demonstrate that a lack of mbnl2 function causes morphological abnormalities at the eye, heart, brain and muscle levels, supporting an essential role for mbnl2 during embryonic development. Major features of DM are replicated in our model, including muscle defects and splicing abnormalities. We found that the absence of mbnl2 causes disruption to the organization of myofibrils in skeletal and heart muscle of zebrafish embryos, and a reduction in the amount of both slow and fast muscle fibres. Notably, our findings included altered splicing patterns of two transcripts whose expression is also altered in DM patients: clcn1 and tnnt2. The studies described herein provide broader insight into the functions of MBNL2. They also lend support to the hypothesis that the sequestration of this protein is an important determinant in DM pathophysiology, and imply a direct role of MBNL2 in splicing regulation of specific transcripts, which, when altered, contributes to the DM phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.