The expected universal dynamics associated with the initial stage of droplet coalescence are difficult to study visually due to the rapid motion of the liquid and the awkward viewing geometry. Here we employ an electrical method to study the coalescence of two low-viscosity droplets at early times. We measure the growth dynamics of the bridge connecting the two droplets and observe a new asymptotic regime inconsistent with previous theoretical predictions. The measurements are consistent with a model in which the two liquids coalesce with a slightly deformed interface.
In this paper, we have established a unified framework of multistage parameter estimation. We demonstrate that a wide variety of statistical problems such as fixed-sample-size interval estimation, point estimation with error control, bounded-width confidence intervals, interval estimation following hypothesis testing, construction of confidence sequences, can be cast into the general framework of constructing sequential random intervals with prescribed coverage probabilities. We have developed exact methods for the construction of such sequential random intervals in the context of multistage sampling. In particular, we have established inclusion principle and coverage tuning techniques to control and adjust the coverage probabilities of sequential random intervals. We have obtained concrete sampling schemes which are unprecedentedly efficient in terms of sampling effort as compared to existing procedures.
In selective withdrawal, fluid is withdrawn through a nozzle suspended above the flat interface separating two immiscible, density-separated fluids of viscosities nu(upper) and nu(lower) = lambda nu(upper). At low withdrawal rates, the interface gently deforms into a hump. At a transition withdrawal rate, a spout of the lower fluid becomes entrained with the flow of the upper one into the nozzle. When lambda=0.005, the spouts at the transition are very thin with features that are over an order of magnitude smaller than any observed in the humps. When lambda=20, there is an intricate pattern of hysteresis and a spout appears which is qualitatively different from those seen at lower lambda. No corresponding qualitative difference is seen in the hump shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.