During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.
SummaryMalaria parasites modify their host cell, the mature human erythrocyte. We are interested in the molecules mediating these processes, and have recently described a family of parasite-encoded heat shock proteins (PfHsp40s) that are targeted to the host cell, and implicated in host cell modification. Hsp40s generally function as co-chaperones of members of the Hsp70 family, and until now it was thought that human Hsp70 acts as the PfHsp40 interaction partner within the host cell. Here we revise this hypothesis, and identify and characterize an exported parasite-encoded Hsp70, referred to as PfHsp70-x. PfHsp70-x is exported to the host erythrocyte where it forms a complex with PfHsp40s in structures known as J-dots, and is closely associated with PfEMP1. Interestingly, Hsp70-x is encoded only by parasite species that export the major virulence factor EMP1, implying a possible role for Hsp70-x in EMP1 presentation at the surface of the infected erythrocyte. Our data strongly support the presence of parasite-encoded chaperone/co-chaperone complexes within the host erythrocyte, which are involved in protein traffic through the host cell. The host-pathogen interaction within the infected erythrocyte is more complex than previously thought, and is driven not only by parasite co-chaperones, but also by the parasite-encoded chaperone Hsp70-x itself.
Background:To survive, Plasmodium falciparum parasites export proteins into their host cell. Results: We have characterized the localization, synthesis, and macromolecular-arrangement of the protein export machinery in Plasmodium falciparum. Conclusion: This machinery is carried into the host-cell and is present as a large macromolecular complex. Significance: These data fill current gaps in the field relating to the biochemical nature of Plasmodium falciparum protein export.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.