T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3′‐terminus of the ligating strand using short ligation probes (9‐mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5′‐phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.
Accumulation of the microtubule-associated protein Tau is linked to neuronal cell death in tauopathies, but how intraneuronal Tau levels are regulated in health and disease remains unclear. Here, we show that conditional inactivation of the trafficking adaptor protein Numb in retinal ganglion cells (RGCs) increases Tau levels and leads to axonal blebbing, which is followed by neuronal cell loss in aged mice. In the TauP301S mouse model of tauopathy, conditional inactivation of Numb in RGCs and spinal motoneurons accelerates neurodegeneration, and loss of Numb in motoneurons also leads to precocious hindlimb paralysis. Conversely, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels and reduces axonal blebbing in TauP301S RGCs, leading to improved electrical activity in cultured neurons and improves performance in a visually guided behavior test in vivo. These results uncover Numb as a key regulator of intracellular Tau levels and identify Numb-72 as a potential therapeutic factor for tauopathies.
Self‐replication of nucleic acids in the absence of enzymes represents an important and poorly understood step in the origin of life as such reported systems are strongly hindered by product inhibition. Studying one of the few successful examples of enzymatic DNA self‐replication based on a simple ligation chain reaction, lesion‐induced DNA amplification (LIDA), can shed light on how this fundamental process may have originally evolved. To identify the unknown factors that lead LIDA to overcome product inhibition we have employed isothermal titration calorimetry and global fitting of time‐dependent ligation data to characterize the individual steps of the amplification process. We find that incorporating the abasic lesion into one of the four primers substantially decreases the stability difference between the product and intermediate complexes compared with complexes without the abasic group. In the presence of T4 DNA ligase this stability gap is further reduced by two orders of magnitude revealing that the ligase also helps overcome product inhibition. Kinetic simulations reveal that the intermediate complex stability and the magnitude of the ligation rate constant significantly impact the rate of self‐replication, suggesting that catalysts that both facilitate ligation and stabilize the intermediate complex might be a route to efficient nonenzymatic replication.
Self-replication of nucleic acids in the absence of enzymes such as polymerases or ligases represents an important and poorly understood step in the origin of life. In fact, the self-replication of nucleic acids remains strongly hindered by product inhibition, even when enzymes are present. Studying one of the few successful examples of enzymatic DNA self-replication based on a simple ligation chain reaction can shed light on how this fundamental process may have originally evolved. Previously, our group reported lesion-induced DNA amplification (LIDA), which is an isothermal ligase chain reaction. It was proposed that the lesion, a destabilizing abasic group, played an important role in reducing product inhibition. However, using abasic groups in non-enzymatic ligation cycles did not yield appreciable amplification. In order to identify the unknown factors that overcome product inhibition in LIDA, we have performed a detailed kinetic and thermodynamic analysis of the process, employing isothermal titration calorimetry (ITC) and global fitting of PAGE fluorescence data to characterize the individual steps of the amplification process. We found that in the absence of an enzyme, the ligated product binds four to five orders of magnitude more tightly to the template than to the shorter unligated strands of the intermediate complex. In the presence of T4 DNA ligase, this stability gap was reduced by two orders of magnitude, such that the intermediate and product complexes were roughly equal in stability. Thus, the ligase helps overcome product inhibition by reducing the affinity difference between the DNA product duplex and the intermediate complex. Furthermore, kinetic simulations showed that the stability of the intermediate complex, as well as the rate constant of ligation, significantly impacts the rate of self-replication, suggesting that catalysts that stabilize the intermediate complex might be a route to efficient nonenzymatic replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.