Background-Maternal diabetes increases risk for congenital malformations, particularly cardiac outflow tract defects. Maternal diabetes inhibits expression of Pax3 in neuroepithelium
Microglia, the resident macrophage of the brain, can release substances that aid neuronal development, differentiation and survival. We have investigated the effects of non-activated microglia on the survival of cultured rat cerebellar granule neurones. Microglial-conditioned medium, collected from primary rat microglial cultures, was used to treat 7-day-in-vitro neurones, and neuronal viability and proliferation was assessed following a further 1 or 7 days in culture. Microglialconditioned medium enhanced neuronal survival by up to 50% compared with untreated neurones and this effect was completely abated by pretreatment of the microglia with L-leucine methyl ester. The expression of the proliferation marker Ki-67 increased in neuronal cultures treated with microglial-conditioned medium suggesting enhanced proliferation of precursor neurones. Microglial-induced neuronal proliferation could be attenuated by specific inhibition of mitogen-activated protein kinase or phosphatidylinositol-3-kinase/Akt signalling pathways, and by selective fractionation and immunodepletion of the microglial-conditioned medium. Activation of the Notch pathway was enhanced as antibody against the Notch ligand, delta-1, prevented the microglial-induced neuronal proliferation. These results show that microglia release stable neurotrophic factors that can promote neuronal precursor cell proliferation.
The in vivo monitoring of cell survival and migration will be essential to the translation of cell-based therapies from the laboratory to clinical studies. The pre-labeling of cells with magnetic resonance imaging (MRI) contrast agents renders them visible in vivo for serial cellular imaging. However, little is known about the impact of the presence of these metal particles inside transplanted cells. The use of the bimodal contrast agent GRID made it possible to demonstrate by means of fluorescent microscopy and inductively coupled plasma mass spectrometry (ICP-MS) that, after 16 h of incubation (without the use of a transfection agent), neural stem cells (NSCs) were saturated and no longer incorporated particles. With this maximal uptake, no significant effect on cell viability was observed. However, a significant decrease in proliferation was evident in cells that underwent 24 h of labeling. A significant increase in reactive oxygen species was observed for all GRID labeling, with a very significant increase with 24 h of labeling. GRID labeling did not affect cell motility in comparison with PKH26-labeled NSCs in a glioma-based migration assay and also allowed differentiation into all major cell types of the brain. GRID-labeled cells induced a signal change of 47% on T(2) measurements and allows a detection of cell clusters of approximately 220 cells/microl. Further in vivo testing will be required to ensure that cell labeling with gadolinium-based MRI contrast agents does not impair their ability to repair.
During neural tube closure, Pax3 is required to inhibit p53-dependent apoptosis. Pax3 is also required for migration of cardiac neural crest (CNC) from the neural tube to the heart and septation of the primitive single cardiac outflow tract into the aorta and pulmonary arteries. Whether Pax3 is required for CNC migration and outflow tract septation by inhibiting p53-dependent apoptosis is not known. In this study, mouse strains carrying reporters linked to Pax3 alleles were used to map the fate of CNC cells in embryos which were either Pax3-sufficient (expressing one or two functional Pax3 alleles) or Pax3-deficient (expressing two null Pax3 alleles), and in which p53 had been inactivated or not. Migrating CNC cells were observed in both Pax3-sufficient and –deficient embryos, but CNC cells were sparse and disorganized in Pax3-deficient embryos as migration progressed. The defective migration was associated with increased cell death. Suppression of p53, either by null mutation of the p53 gene, or administration of a p53 inhibitor, pifithrin-α, prevented the defective CNC migration and apoptosis in Pax3-deficient embryos, and also restored proper development of cardiac outflow tracts. These results indicate that Pax3 is required for cardiac outflow tract septation because it blocks p53-dependent processes during CNC migration.
BackgroundPax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.Methodology/Principal FindingsWe employed murine embryonic stem cell (ESC)-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Conclusions/SignificancePax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.