Abstract.Immunoregulation is considered a common feature of Schistosoma mansoni infections, and elevated levels of T regulatory (Treg) lymphocytes have been reported during chronic human schistosomiasis. We now report that the removal of Treg (CD4+/CD25hi/CD127low lymphocytes) from peripheral blood mononuclear cells (PBMCs) of S. mansoni–infected individuals leads to increased levels of phytohemagglutinin (PHA)-stimulated interferon gamma (IFNγ) production and decreased interleukin-10 (IL-10) responses. Exposure to schistosome antigens did not result in measurable IFNγ by either PBMC or Treg-depleted populations. Interleukin-10 responses to soluble egg antigens (SEA) by PBMC were unchanged by Treg depletion, but the depletion of Treg greatly decreased IL-10 production to soluble worm antigenic preparation (SWAP). Proliferative responses to PHA increased upon Treg removal, but responses to SEA or SWAP did not, unless only initially low responders were evaluated. Addition of anti-IL-10 increased PBMC proliferative responses to either SEA or SWAP, but did not alter responses by Treg-depleted cells. Blockade by anti-transforming growth factor-beta (TGF-β) increased SEA but not SWAP proliferative responses by PBMC, whereas anti-TGF-β increased both SEA- and SWAP-stimulated responses by Treg-depleted cultures. Addition of both anti-IL-10 and anti-TGF-β to PBMC or Treg-depleted populations increased proliferation of both populations to either SEA or SWAP. These studies demonstrate that Treg appear to produce much of the antigen-stimulated IL-10, but other cell types or subsets of Treg may produce much of the TGF-β. The elevated levels of Treg seen in chronic schistosomiasis appear functional and involve IL-10 and TGF-β in antigen-specific immunoregulation perhaps leading to regulation of immunopathology and/or possibly decreased immunoprotective responses.
Summary Background The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin-ligase that targets the Cyclin E and dMyc proteins for degradation. Its human ortholog Fbw7 is commonly lost in many cancers, suggesting that failure to degrade ago/Fbw7 targets leads to excess tissue growth. Results Here we show that although loss of ago induces hyperplasia of some organs, it paradoxically shrinks the size of the adult eye. We find that this reflects a requirement for ago to restrict apoptotic activity of the rbf1/e2f1 pathway adjacent to the eye-specific morphogenetic furrow: ago mutant cells display elevated de2f1 activity, express the pro-death dE2f1 targets hid and rpr, and undergo high rates of apoptosis. This death and the resulting small-eye phenotype are dependent on rbf1, de2f1, hid, and the rbf1/de2f1 regulators cyclin E and dacapo, but are independent of dp53. A transactivation-deficient de2f1 allele blocks MF-associated apoptosis of ago mutant cells but does not retard their clonal overgrowth, indicating that intact de2f1 function is required for the death but not overproliferation of ago cells. Alleles of EGFR and wg pathway components further modulate the ago apoptotic and eye size phenotypes, suggesting these pathways control rates of de2f1-driven apoptosis among ago mutant cells. Conclusions These data show that ago loss requires a collaborating block in cell death to efficiently drive tissue overgrowth and that this conditional growth-suppressor phenotype reflects a role for the gene in restricting apoptotic output of the rbf1/de2f1 pathway. Moreover, the susceptibility of ago mutant cells to succumb to this apoptotic program appears to depend on local variations in extracellular signaling that could thus determine tissue-specific fates of ago mutant cells.
SUMMARYarchipelago (ago)/Fbw7 encodes a conserved protein that functions as the substrate-receptor component of a polyubiquitin ligase that suppresses tissue growth in flies and tumorigenesis in vertebrates. Ago/Fbw7 targets multiple proteins for degradation, including the G1-S regulator Cyclin E and the oncoprotein dMyc/c-Myc. Despite prominent roles in growth control, little is known about the signals that regulate Ago/Fbw7 abundance in developing tissues. Here we use the Drosophila eye as a model to identify developmental signals that regulate ago expression. We find that expression of ago mRNA and protein is induced by passage of the morphogenetic furrow (MF) and identify the hedgehog (hh) and Notch (N) pathways as elements of this inductive mechanism. Cells mutant for N pathway components, or hh-defective cells that express reduced levels of the Notch ligand Delta, fail to upregulate ago transcription in the region of the MF; reciprocally, ectopic N activation in eye discs induces expression of ago mRNA. A fragment of the ago promoter that contains consensus binding sites for the N pathway transcription factor Su(H) is bound by Su(H) and confers N-inducibility in cultured cells. The failure to upregulate ago in N pathway mutant cells correlates with accumulation of the SCF-Ago target Cyclin E in the area of the MF, and this is rescued by re-expression of ago. These data suggest a model in which N acts through ago to restrict levels of the pro-mitotic factor Cyclin E. This N-Ago-Cyclin E link represents a significant new cell cycle regulatory mechanism in the developing eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.