The human gut microbiota impacts host metabolism and has been implicated in the pathophysiology of obesity and metabolic syndromes. However, defining the roles of specific microbial activities and metabolites on host phenotypes has proven challenging due to the complexity of the microbiome-host ecosystem. Here, we identify strains from the abundant gut bacterial phylum Bacteroidetes that display selective bile salt hydrolase (BSH) activity. Using isogenic strains of wild-type and BSH-deleted Bacteroides thetaiotaomicron, we selectively modulated the levels of the bile acid tauro-β-muricholic acid in monocolonized gnotobiotic mice. B. thetaiotaomicron BSH mutant-colonized mice displayed altered metabolism, including reduced weight gain and respiratory exchange ratios, as well as transcriptional changes in metabolic, circadian rhythm, and immune pathways in the gut and liver. Our results demonstrate that metabolites generated by a single microbial gene and enzymatic activity can profoundly alter host metabolism and gene expression at local and organism-level scales.
SummaryRenewed interest in gene amplification stems from its importance in evolution and a variety of medical problems ranging from drug resistance to cancer. However, amplified DNA segments (amplicons) are not fully characterized in any organism. Here we report a novel Acinetobacter baylyi system for genome-wide studies. Amplification mutants that consume aromatic compounds were selected under conditions requiring high-level expression from three promoters in a linked set of chromosomal genes. Tools were developed to relocate these catabolic genes to any non-essential chromosomal position, and 49 amplification mutants from five genomic contexts were characterized. Amplicon size (18-271 kb) and copy number (2-105) indicated that 30% of mutants carried more than 1 Mb of amplified DNA. Amplification features depended on genomic position. For example, amplicons from one locus were similarly sized but displayed variable copy number, whereas those from another locus were differently sized but had comparable copy number. Additionally, the importance of sequence context was highlighted in one region where amplicons differed depending on the presence of a promoter mutation in the strain from which they were selected. DNA sequences at amplicon boundaries in 19 mutants reflected illegitimate recombination. Furthermore, steady-state duplication frequencies measured under non-selective conditions (10 -4 to 10 -5) confirmed that spontaneous gene duplication is a major source of genetic variation.
Pseudomonasspecies can exhibit phenotypic variation resulting fromgacSorgacAmutation.P. fluorescensPf0-1 is agacAmutant and exhibits pleiotropic changes following the introduction of a functional allele. GacA enhances biofilm development while reducing dissemination in soil, suggesting that alternative Gac phenotypes enablePseudomonassp. to exploit varied environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.