Early life stress presents an important risk factor for drug addiction and comorbid depression and anxiety through persistent effects on the mesolimbic dopamine pathways. Using an early life stress model for child neglect (a single 24 h episode of maternal deprivation, MD) in rats, recent published works from our lab show that MD induces dysfunction in the ventral tegmental area and its negative controller, the lateral habenula (LHb). MD‐induced potentiation of glutamatergic synaptic transmission onto LHb neurons shifts the coordination of excitation/inhibition (E/I) balance towards excitation, resulting in an increase in the overall spontaneous neuronal activity with elevation in bursting and tonic firing, and in the intrinsic excitability of LHb neurons in early adolescent male rats. Here, we explored how MD affects intravenous morphine self‐administration (MSA) acquisition and sucrose preference as well as glutamatergic synaptic function in LHb neurons of adult male rats self‐administering morphine. We found that MD‐induced increases in LHb neuronal and glutamatergic synaptic activity and E/I ratio persisted into adulthood. Moreover, MD significantly reduced morphine intake, triggered anhedonia‐like behaviour in the sucrose preference test and was associated with persistent glutamatergic potentiation 24 h after the last MSA session. MSA also altered the decay time kinetics of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor (AMPAR) currents in LHb neurons of control rats during this time period. Our data highlight that early life stress‐induced glutamatergic plasticity in LHb may dampen the positive reinforcing and motivational properties of both natural rewards and opioids, and may contribute to the development of anhedonia and dysphoric states associated with opioids.
Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.
In this Perspective review, we highlight some of the less explored aspects of lateral habenula (LHb) function in contextual memory, sleep, and behavioral flexibility. We provide evidence that LHb is well-situated to integrate different internal state and multimodal sensory information from memory-, stress-, motivational-, and reward-related circuits essential for both survival and decision making. We further discuss the impact of early life stress (ELS) on LHb function as an example of stress-induced hyperactivity and dysregulation of neuromodulatory systems within the LHb that promote anhedonia and motivational deficits following ELS. We acknowledge that recent technological advancements in manipulation and recording of neural circuits in simplified and well-controlled behavioral paradigms have been invaluable in our understanding of the critical role of LHb in motivation and emotional regulation as well as the involvement of LHb dysfunction in stress-induced psychopathology. However, we also argue that the use of ethologically-relevant behaviors with consideration of complex aspects of decision-making is warranted for future studies of LHb contributions in a wide range of psychiatric illnesses. We conclude this Perspective with some of the outstanding issues for the field to consider where a multi-systems approach is needed to investigate the complex nature of LHb circuitry interactions with environmental stimuli that predisposes psychiatric disorders.
Chronic opiate exposure induces neuroadaptations in the mesocorticolimbic system including ventral tegmental area (VTA) dopamine (DA) neurons, whose soma size is decreased following opiate exposure. Yet it is now well documented that VTA DA neurons are heterogeneous, with notable differences between VTA DA neurons based on their projection target. Therefore, we sought to determine whether chronic morphine induced similar changes in the morphology of VTA DA neurons that project to the nucleus accumbens (NAc) and prefrontal cortex (PFC). We utilized Cre-dependent retrograde viral vectors in DA Cre driver lines to label VTA DA neurons that projected to NAc and PFC and assessed neuronal soma size. Consistent with previous data, the soma size of VTA DA neurons that projected to the NAc medial shell was decreased following morphine exposure. However, soma size of VTA DA neurons that projected to the NAc core was unaltered by morphine. Interestingly, morphology of PFC-projecting VTA DA neurons was also altered by morphine, but in this case soma size was increased compared to sham controls. Differences in basal soma size were also noted, suggesting stable differences in projection-specific morphology in addition to drug-induced changes. Together, these data suggest morphine-induced changes in VTA DA morphology occur within distinct VTA DA populations and that study of opiate-induced structural plasticity of individual VTA DA subcircuits may be critical for understanding addiction-related behavior.Electronic supplementary materialThe online version of this article (10.1186/s13041-019-0435-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.