A cell line, RTL-W1, has been developed from the normal liver of an adult rainbow trout by proteolytic dissociation of liver fragments. RTL-W1 can be grown routinely in the basal medium, L-15, supplemented with 5% fetal bovine serum. In this medium, the cells have been passaged approximately 100 times over an 8-year period. The cells do not form colonies or grow in soft agar. The cultures are heteroploid. The cell shape was predominantly polygonal or epithelial-like, but as cultures became confluent, bipolar or fibroblast-like cells appeared. Among the prominent ultrastructural features of RTL-W1 were distended endoplasmic reticulum and desmosomes. Benzo[a]pyrene was cytotoxic to RTL-W1. Activity for the enzyme, 7-ethoxyresorufin O-deethylase (EROD), which is a measure of the cytochrome P4501A1 protein, increased dramatically in RTL-W1 upon their exposure to increasing concentrations of either beta-naphthoflavone (BNF) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). With these properties, RTL-W1 should be useful for studying the expression of the cytochrome P450 enzymes and as a tool for assessing the toxic potency of environmental contaminants.
Collagenase was used to prepare primary cell cultures from rainbow trout, Oncorhynchus mykiss (Walbaum), gills. Although difficult to subcultivate, one primary culture led to the development of a cell line, RTgill-Wl. RTgill-Wl grew in the basal medium, L-15, supplemented with foetal bovine serum at between 5 and 10%, but not in L-15 alone. The cells have been passaged approximately 50 times over a 4-year period. At confluency, the cell shape was predominantly polygonal or epithelial-like. RTgill-Wl cultures were demonstrated by DNA staining with H33258 and by growth on agar to be contaminated with mycoplasma, but this contaminant was eradicated by treatment with mycoplasma removal agent (MRA) and BM cyclin.
Diclofop methyl, a commercial herbicide, was used as the sole carbon source to cultivate diclofop-degrading biofilms in continuous-flow slide culture. The biofilms were analyzed by using scanning confocal laser microscopy and image analysis. Spatial relationships among members of the community were distinctive to diclofop-grown biofilms. These relationships did not develop when the biofilms were grown on more labile substrates but were conserved when the biofilms were cultivated with other chlorinated ring compounds. The structures included conical bacterial consortia rising to 30 ,um above the surrounding biofilm, grape-like clusters of cocci embedded in a matrix of perpendicularly oriented bacilli, and other highly specific patterns of intraand intergeneric cellular coaggregation and growth. These unique consortial relationships indicated that syntrophic interactions may be necessary for optimal degradation of diclofop methyl and other chlorinated ring compounds.
Pulmonary intravascular macrophages (PIMs) are present in ruminants and horses. These species are highly sensitive to acute lung inflammation compared with non-PIM-containing species such as rats and humans. There is evidence that rats and humans may also recruit PIMs under certain conditions. We investigated precise contributions of PIMs to acute lung inflammation in a calf model. First, PIMs were recognized with a combination of in vivo phagocytic tracer Monastral blue and postembedding immunohistology with anti-CD68 monoclonal antibody. Second, gadolinium chloride depleted PIMs within 48 h of treatment (P < 0.05). Finally, PIMs contain TNF-alpha, and their depletion reduces cells positive for IL-8 (P < 0.05) and TNF-alpha (P < 0.05) and histopathological signs of acute lung inflammation in calves infected with Mannheimia hemolytica. The majority of IL-8-positive inflammatory cells in lung septa of infected calves were platelets. Platelets from normal cattle contained preformed IL-8 that was released upon in vitro exposure to thrombin (P < 0.05). These novel data show that PIMs, as the source of TNF-alpha, promote recruitment of inflammatory cells including IL-8-containing platelets to stimulate acute inflammation and pathology in lungs. These data may also be relevant to humans due to our ability to recruit PIMs.
Toll-like receptor 9 (TLR9) has been found to be the main receptor to respond to bacterial DNA in a wide variety of species. Recent work has shown that TLR9 is expressed in a diverse set of cells within the lung. However, much of this data has been centered on human and mouse cell culture lines or primary cultures and very little is known of TLR9 expression in intact lung, especially that of the horse. Here we show that TLR9 is expressed in the lungs of horses in a wide variety of cells. In particular, we note expression in pulmonary intravascular macrophages (PIMs), alveolar macrophages, bronchial epithelial cells, and type-II cells amongst others. Immunogold electron microscopy localized TLR9 in nuclei, cytoplasm, and plasma membrane of various lung cells. The data also show that E. coli lipopolysaccharide significantly increased expression of TLR9 mRNA in lungs and the number of cells in the lung septa that were positive for TLR9 protein. Protein expression was seen in airway epithelium, vascular endothelium, and inflammatory cells in blood vessels. Intravenous administration of gadolinium chloride, which depletes macrophages, before the lipopolysaccharide treatment significantly inhibited the LPSinduced increase in TLR9 mRNA in the lungs of the horses. We conclude that TLR9 is expressed in lung cells including PIMs and that the lipopolysaccharide treatment increases TLR9 mRNA expression. The increase in TLR9 mRNA is eliminated by depletion of PIMs, implicating these cells as a major source of TLR9 in the equine lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.